MW 45x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010073
GTIN/EAN: 5906301810728
Średnica Ø
45 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
357.85 g
Kierunek magnesowania
↑ osiowy
Udźwig
69.46 kg / 681.39 N
Indukcja magnetyczna
495.87 mT / 4959 Gs
Powłoka
[NiCuNi] nikiel
136.80 ZŁ z VAT / szt. + cena za transport
111.22 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
albo napisz za pomocą
formularz
w sekcji kontakt.
Masę oraz kształt magnesów neodymowych sprawdzisz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Parametry produktu - MW 45x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010073 |
| GTIN/EAN | 5906301810728 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 357.85 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 69.46 kg / 681.39 N |
| Indukcja magnetyczna ~ ? | 495.87 mT / 4959 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - raport
Poniższe informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 45x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4958 Gs
495.8 mT
|
69.46 kg / 69460.0 g
681.4 N
|
krytyczny poziom |
| 1 mm |
4742 Gs
474.2 mT
|
63.55 kg / 63553.9 g
623.5 N
|
krytyczny poziom |
| 2 mm |
4523 Gs
452.3 mT
|
57.81 kg / 57805.8 g
567.1 N
|
krytyczny poziom |
| 3 mm |
4303 Gs
430.3 mT
|
52.33 kg / 52327.7 g
513.3 N
|
krytyczny poziom |
| 5 mm |
3870 Gs
387.0 mT
|
42.33 kg / 42329.9 g
415.3 N
|
krytyczny poziom |
| 10 mm |
2886 Gs
288.6 mT
|
23.53 kg / 23531.8 g
230.8 N
|
krytyczny poziom |
| 15 mm |
2106 Gs
210.6 mT
|
12.54 kg / 12537.0 g
123.0 N
|
krytyczny poziom |
| 20 mm |
1535 Gs
153.5 mT
|
6.66 kg / 6657.1 g
65.3 N
|
mocny |
| 30 mm |
845 Gs
84.5 mT
|
2.02 kg / 2018.9 g
19.8 N
|
mocny |
| 50 mm |
315 Gs
31.5 mT
|
0.28 kg / 279.5 g
2.7 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 45x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.89 kg / 13892.0 g
136.3 N
|
| 1 mm | Stal (~0.2) |
12.71 kg / 12710.0 g
124.7 N
|
| 2 mm | Stal (~0.2) |
11.56 kg / 11562.0 g
113.4 N
|
| 3 mm | Stal (~0.2) |
10.47 kg / 10466.0 g
102.7 N
|
| 5 mm | Stal (~0.2) |
8.47 kg / 8466.0 g
83.1 N
|
| 10 mm | Stal (~0.2) |
4.71 kg / 4706.0 g
46.2 N
|
| 15 mm | Stal (~0.2) |
2.51 kg / 2508.0 g
24.6 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 1332.0 g
13.1 N
|
| 30 mm | Stal (~0.2) |
0.40 kg / 404.0 g
4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 56.0 g
0.5 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 45x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.84 kg / 20838.0 g
204.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.89 kg / 13892.0 g
136.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.95 kg / 6946.0 g
68.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.73 kg / 34730.0 g
340.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 45x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
2.32 kg / 2315.3 g
22.7 N
|
| 1 mm |
|
5.79 kg / 5788.3 g
56.8 N
|
| 2 mm |
|
11.58 kg / 11576.7 g
113.6 N
|
| 5 mm |
|
28.94 kg / 28941.7 g
283.9 N
|
| 10 mm |
|
57.88 kg / 57883.3 g
567.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 45x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
69.46 kg / 69460.0 g
681.4 N
|
OK |
| 40 °C | -2.2% |
67.93 kg / 67931.9 g
666.4 N
|
OK |
| 60 °C | -4.4% |
66.40 kg / 66403.8 g
651.4 N
|
OK |
| 80 °C | -6.6% |
64.88 kg / 64875.6 g
636.4 N
|
|
| 100 °C | -28.8% |
49.46 kg / 49455.5 g
485.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 45x30 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
241.01 kg / 241010 g
2364.3 N
5 803 Gs
|
N/A |
| 1 mm |
230.79 kg / 230786 g
2264.0 N
9 703 Gs
|
207.71 kg / 207708 g
2037.6 N
~0 Gs
|
| 2 mm |
220.52 kg / 220517 g
2163.3 N
9 485 Gs
|
198.47 kg / 198465 g
1946.9 N
~0 Gs
|
| 3 mm |
210.44 kg / 210438 g
2064.4 N
9 265 Gs
|
189.39 kg / 189394 g
1858.0 N
~0 Gs
|
| 5 mm |
190.94 kg / 190942 g
1873.1 N
8 826 Gs
|
171.85 kg / 171848 g
1685.8 N
~0 Gs
|
| 10 mm |
146.87 kg / 146875 g
1440.8 N
7 741 Gs
|
132.19 kg / 132187 g
1296.8 N
~0 Gs
|
| 20 mm |
81.65 kg / 81650 g
801.0 N
5 771 Gs
|
73.48 kg / 73485 g
720.9 N
~0 Gs
|
| 50 mm |
12.52 kg / 12519 g
122.8 N
2 260 Gs
|
11.27 kg / 11267 g
110.5 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 45x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 25.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 15.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 12.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 11.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 45x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.76 km/h
(4.66 m/s)
|
3.88 J | |
| 30 mm |
24.77 km/h
(6.88 m/s)
|
8.47 J | |
| 50 mm |
31.50 km/h
(8.75 m/s)
|
13.70 J | |
| 100 mm |
44.44 km/h
(12.34 m/s)
|
27.26 J |
Tabela 9: Odporność na korozję
MW 45x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 45x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 79 446 Mx | 794.5 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 45x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 69.46 kg | Standard |
| Woda (dno rzeki) |
79.53 kg
(+10.07 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa tylko ułamek siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i lśniący charakter.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, urządzenia medyczne czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- na podłożu wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy przy magnesach z neodymem
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Niklowa powłoka a alergia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Zakaz zabawy
Koniecznie zabezpiecz magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są dramatyczne.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Moc przyciągania
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Pole magnetyczne a elektronika
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Nie przegrzewaj magnesów
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Kompas i GPS
Uwaga: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
