MW 45x30 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010073
GTIN/EAN: 5906301810728
Średnica Ø
45 mm [±0,1 mm]
Wysokość
30 mm [±0,1 mm]
Waga
357.85 g
Kierunek magnesowania
↑ osiowy
Udźwig
69.46 kg / 681.39 N
Indukcja magnetyczna
495.87 mT / 4959 Gs
Powłoka
[NiCuNi] nikiel
136.80 ZŁ z VAT / szt. + cena za transport
111.22 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo zostaw wiadomość korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Moc oraz wygląd magnesów sprawdzisz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MW 45x30 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x30 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010073 |
| GTIN/EAN | 5906301810728 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 30 mm [±0,1 mm] |
| Waga | 357.85 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 69.46 kg / 681.39 N |
| Indukcja magnetyczna ~ ? | 495.87 mT / 4959 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Poniższe informacje są bezpośredni efekt analizy matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 45x30 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4958 Gs
495.8 mT
|
69.46 kg / 153.13 lbs
69460.0 g / 681.4 N
|
krytyczny poziom |
| 1 mm |
4742 Gs
474.2 mT
|
63.55 kg / 140.11 lbs
63553.9 g / 623.5 N
|
krytyczny poziom |
| 2 mm |
4523 Gs
452.3 mT
|
57.81 kg / 127.44 lbs
57805.8 g / 567.1 N
|
krytyczny poziom |
| 3 mm |
4303 Gs
430.3 mT
|
52.33 kg / 115.36 lbs
52327.7 g / 513.3 N
|
krytyczny poziom |
| 5 mm |
3870 Gs
387.0 mT
|
42.33 kg / 93.32 lbs
42329.9 g / 415.3 N
|
krytyczny poziom |
| 10 mm |
2886 Gs
288.6 mT
|
23.53 kg / 51.88 lbs
23531.8 g / 230.8 N
|
krytyczny poziom |
| 15 mm |
2106 Gs
210.6 mT
|
12.54 kg / 27.64 lbs
12537.0 g / 123.0 N
|
krytyczny poziom |
| 20 mm |
1535 Gs
153.5 mT
|
6.66 kg / 14.68 lbs
6657.1 g / 65.3 N
|
uwaga |
| 30 mm |
845 Gs
84.5 mT
|
2.02 kg / 4.45 lbs
2018.9 g / 19.8 N
|
uwaga |
| 50 mm |
315 Gs
31.5 mT
|
0.28 kg / 0.62 lbs
279.5 g / 2.7 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 45x30 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
13.89 kg / 30.63 lbs
13892.0 g / 136.3 N
|
| 1 mm | Stal (~0.2) |
12.71 kg / 28.02 lbs
12710.0 g / 124.7 N
|
| 2 mm | Stal (~0.2) |
11.56 kg / 25.49 lbs
11562.0 g / 113.4 N
|
| 3 mm | Stal (~0.2) |
10.47 kg / 23.07 lbs
10466.0 g / 102.7 N
|
| 5 mm | Stal (~0.2) |
8.47 kg / 18.66 lbs
8466.0 g / 83.1 N
|
| 10 mm | Stal (~0.2) |
4.71 kg / 10.37 lbs
4706.0 g / 46.2 N
|
| 15 mm | Stal (~0.2) |
2.51 kg / 5.53 lbs
2508.0 g / 24.6 N
|
| 20 mm | Stal (~0.2) |
1.33 kg / 2.94 lbs
1332.0 g / 13.1 N
|
| 30 mm | Stal (~0.2) |
0.40 kg / 0.89 lbs
404.0 g / 4.0 N
|
| 50 mm | Stal (~0.2) |
0.06 kg / 0.12 lbs
56.0 g / 0.5 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 45x30 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
20.84 kg / 45.94 lbs
20838.0 g / 204.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
13.89 kg / 30.63 lbs
13892.0 g / 136.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.95 kg / 15.31 lbs
6946.0 g / 68.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
34.73 kg / 76.57 lbs
34730.0 g / 340.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 45x30 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.32 kg / 5.10 lbs
2315.3 g / 22.7 N
|
| 1 mm |
|
5.79 kg / 12.76 lbs
5788.3 g / 56.8 N
|
| 2 mm |
|
11.58 kg / 25.52 lbs
11576.7 g / 113.6 N
|
| 3 mm |
|
17.37 kg / 38.28 lbs
17365.0 g / 170.4 N
|
| 5 mm |
|
28.94 kg / 63.81 lbs
28941.7 g / 283.9 N
|
| 10 mm |
|
57.88 kg / 127.61 lbs
57883.3 g / 567.8 N
|
| 11 mm |
|
63.67 kg / 140.37 lbs
63671.7 g / 624.6 N
|
| 12 mm |
|
69.46 kg / 153.13 lbs
69460.0 g / 681.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 45x30 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
69.46 kg / 153.13 lbs
69460.0 g / 681.4 N
|
OK |
| 40 °C | -2.2% |
67.93 kg / 149.76 lbs
67931.9 g / 666.4 N
|
OK |
| 60 °C | -4.4% |
66.40 kg / 146.40 lbs
66403.8 g / 651.4 N
|
OK |
| 80 °C | -6.6% |
64.88 kg / 143.03 lbs
64875.6 g / 636.4 N
|
|
| 100 °C | -28.8% |
49.46 kg / 109.03 lbs
49455.5 g / 485.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 45x30 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
241.01 kg / 531.33 lbs
5 803 Gs
|
36.15 kg / 79.70 lbs
36151 g / 354.6 N
|
N/A |
| 1 mm |
230.79 kg / 508.80 lbs
9 703 Gs
|
34.62 kg / 76.32 lbs
34618 g / 339.6 N
|
207.71 kg / 457.92 lbs
~0 Gs
|
| 2 mm |
220.52 kg / 486.16 lbs
9 485 Gs
|
33.08 kg / 72.92 lbs
33078 g / 324.5 N
|
198.47 kg / 437.54 lbs
~0 Gs
|
| 3 mm |
210.44 kg / 463.94 lbs
9 265 Gs
|
31.57 kg / 69.59 lbs
31566 g / 309.7 N
|
189.39 kg / 417.54 lbs
~0 Gs
|
| 5 mm |
190.94 kg / 420.95 lbs
8 826 Gs
|
28.64 kg / 63.14 lbs
28641 g / 281.0 N
|
171.85 kg / 378.86 lbs
~0 Gs
|
| 10 mm |
146.87 kg / 323.80 lbs
7 741 Gs
|
22.03 kg / 48.57 lbs
22031 g / 216.1 N
|
132.19 kg / 291.42 lbs
~0 Gs
|
| 20 mm |
81.65 kg / 180.01 lbs
5 771 Gs
|
12.25 kg / 27.00 lbs
12247 g / 120.1 N
|
73.48 kg / 162.01 lbs
~0 Gs
|
| 50 mm |
12.52 kg / 27.60 lbs
2 260 Gs
|
1.88 kg / 4.14 lbs
1878 g / 18.4 N
|
11.27 kg / 24.84 lbs
~0 Gs
|
| 60 mm |
7.01 kg / 15.44 lbs
1 690 Gs
|
1.05 kg / 2.32 lbs
1051 g / 10.3 N
|
6.30 kg / 13.90 lbs
~0 Gs
|
| 70 mm |
4.06 kg / 8.95 lbs
1 287 Gs
|
0.61 kg / 1.34 lbs
609 g / 6.0 N
|
3.66 kg / 8.06 lbs
~0 Gs
|
| 80 mm |
2.44 kg / 5.38 lbs
998 Gs
|
0.37 kg / 0.81 lbs
366 g / 3.6 N
|
2.20 kg / 4.84 lbs
~0 Gs
|
| 90 mm |
1.51 kg / 3.34 lbs
786 Gs
|
0.23 kg / 0.50 lbs
227 g / 2.2 N
|
1.36 kg / 3.01 lbs
~0 Gs
|
| 100 mm |
0.97 kg / 2.14 lbs
629 Gs
|
0.15 kg / 0.32 lbs
145 g / 1.4 N
|
0.87 kg / 1.92 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 45x30 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 25.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 20.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 15.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 12.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 11.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 45x30 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
16.76 km/h
(4.66 m/s)
|
3.88 J | |
| 30 mm |
24.77 km/h
(6.88 m/s)
|
8.47 J | |
| 50 mm |
31.50 km/h
(8.75 m/s)
|
13.70 J | |
| 100 mm |
44.44 km/h
(12.34 m/s)
|
27.26 J |
Tabela 9: Parametry powłoki (trwałość)
MW 45x30 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 45x30 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 79 446 Mx | 794.5 µWb |
| Współczynnik Pc | 0.71 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 45x30 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 69.46 kg | Standard |
| Woda (dno rzeki) |
79.53 kg
(+10.07 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Stabilność termiczna
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.71
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują estetyczny, metaliczny wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, pełniącej rolę idealny przewodnik strumienia
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda stal nie zamyka strumienia, przez co część mocy ucieka w powietrzu.
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Wpływ temperatury – gorące środowisko osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Elektronika precyzyjna
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Ostrzeżenie dla sercowców
Osoby z kardiowerterem muszą zachować duży odstęp od magnesów. Silny magnes może rozregulować pracę implantu.
Karty i dyski
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Niklowa powłoka a alergia
Część populacji ma alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może skutkować zaczerwienienie skóry. Wskazane jest stosowanie rękawic bezlateksowych.
Zakaz obróbki
Proszek generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
