MW 45x20 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010071
GTIN/EAN: 5906301810704
Średnica Ø
45 mm [±0,1 mm]
Wysokość
20 mm [±0,1 mm]
Waga
238.56 g
Kierunek magnesowania
↑ osiowy
Udźwig
60.94 kg / 597.79 N
Indukcja magnetyczna
411.81 mT / 4118 Gs
Powłoka
[NiCuNi] nikiel
84.45 ZŁ z VAT / szt. + cena za transport
68.66 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie daj znać za pomocą
formularz zgłoszeniowy
na stronie kontaktowej.
Moc oraz wygląd magnesów neodymowych obliczysz dzięki naszemu
kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MW 45x20 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 45x20 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010071 |
| GTIN/EAN | 5906301810704 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 45 mm [±0,1 mm] |
| Wysokość | 20 mm [±0,1 mm] |
| Waga | 238.56 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 60.94 kg / 597.79 N |
| Indukcja magnetyczna ~ ? | 411.81 mT / 4118 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione wartości stanowią rezultat symulacji inżynierskiej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 45x20 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4117 Gs
411.7 mT
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
miażdżący |
| 1 mm |
3955 Gs
395.5 mT
|
56.23 kg / 123.96 lbs
56228.7 g / 551.6 N
|
miażdżący |
| 2 mm |
3786 Gs
378.6 mT
|
51.51 kg / 113.57 lbs
51512.3 g / 505.3 N
|
miażdżący |
| 3 mm |
3613 Gs
361.3 mT
|
46.91 kg / 103.42 lbs
46911.0 g / 460.2 N
|
miażdżący |
| 5 mm |
3263 Gs
326.3 mT
|
38.28 kg / 84.40 lbs
38282.6 g / 375.6 N
|
miażdżący |
| 10 mm |
2442 Gs
244.2 mT
|
21.43 kg / 47.26 lbs
21434.6 g / 210.3 N
|
miażdżący |
| 15 mm |
1776 Gs
177.6 mT
|
11.34 kg / 25.00 lbs
11340.0 g / 111.2 N
|
miażdżący |
| 20 mm |
1285 Gs
128.5 mT
|
5.93 kg / 13.08 lbs
5932.8 g / 58.2 N
|
uwaga |
| 30 mm |
694 Gs
69.4 mT
|
1.73 kg / 3.82 lbs
1730.8 g / 17.0 N
|
bezpieczny |
| 50 mm |
249 Gs
24.9 mT
|
0.22 kg / 0.49 lbs
222.3 g / 2.2 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 45x20 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| 1 mm | Stal (~0.2) |
11.25 kg / 24.79 lbs
11246.0 g / 110.3 N
|
| 2 mm | Stal (~0.2) |
10.30 kg / 22.71 lbs
10302.0 g / 101.1 N
|
| 3 mm | Stal (~0.2) |
9.38 kg / 20.68 lbs
9382.0 g / 92.0 N
|
| 5 mm | Stal (~0.2) |
7.66 kg / 16.88 lbs
7656.0 g / 75.1 N
|
| 10 mm | Stal (~0.2) |
4.29 kg / 9.45 lbs
4286.0 g / 42.0 N
|
| 15 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2268.0 g / 22.2 N
|
| 20 mm | Stal (~0.2) |
1.19 kg / 2.61 lbs
1186.0 g / 11.6 N
|
| 30 mm | Stal (~0.2) |
0.35 kg / 0.76 lbs
346.0 g / 3.4 N
|
| 50 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 45x20 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
18.28 kg / 40.30 lbs
18282.0 g / 179.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
12.19 kg / 26.87 lbs
12188.0 g / 119.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
6.09 kg / 13.43 lbs
6094.0 g / 59.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
30.47 kg / 67.17 lbs
30470.0 g / 298.9 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 45x20 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
2.03 kg / 4.48 lbs
2031.3 g / 19.9 N
|
| 1 mm |
|
5.08 kg / 11.20 lbs
5078.3 g / 49.8 N
|
| 2 mm |
|
10.16 kg / 22.39 lbs
10156.7 g / 99.6 N
|
| 3 mm |
|
15.24 kg / 33.59 lbs
15235.0 g / 149.5 N
|
| 5 mm |
|
25.39 kg / 55.98 lbs
25391.7 g / 249.1 N
|
| 10 mm |
|
50.78 kg / 111.96 lbs
50783.3 g / 498.2 N
|
| 11 mm |
|
55.86 kg / 123.15 lbs
55861.7 g / 548.0 N
|
| 12 mm |
|
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 45x20 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
60.94 kg / 134.35 lbs
60940.0 g / 597.8 N
|
OK |
| 40 °C | -2.2% |
59.60 kg / 131.39 lbs
59599.3 g / 584.7 N
|
OK |
| 60 °C | -4.4% |
58.26 kg / 128.44 lbs
58258.6 g / 571.5 N
|
|
| 80 °C | -6.6% |
56.92 kg / 125.48 lbs
56918.0 g / 558.4 N
|
|
| 100 °C | -28.8% |
43.39 kg / 95.66 lbs
43389.3 g / 425.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 45x20 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
166.23 kg / 366.47 lbs
5 401 Gs
|
24.93 kg / 54.97 lbs
24934 g / 244.6 N
|
N/A |
| 1 mm |
159.87 kg / 352.45 lbs
8 076 Gs
|
23.98 kg / 52.87 lbs
23980 g / 235.2 N
|
143.88 kg / 317.20 lbs
~0 Gs
|
| 2 mm |
153.38 kg / 338.14 lbs
7 910 Gs
|
23.01 kg / 50.72 lbs
23007 g / 225.7 N
|
138.04 kg / 304.33 lbs
~0 Gs
|
| 3 mm |
146.92 kg / 323.90 lbs
7 742 Gs
|
22.04 kg / 48.58 lbs
22038 g / 216.2 N
|
132.23 kg / 291.51 lbs
~0 Gs
|
| 5 mm |
134.19 kg / 295.83 lbs
7 399 Gs
|
20.13 kg / 44.37 lbs
20128 g / 197.5 N
|
120.77 kg / 266.25 lbs
~0 Gs
|
| 10 mm |
104.43 kg / 230.22 lbs
6 527 Gs
|
15.66 kg / 34.53 lbs
15664 g / 153.7 N
|
93.98 kg / 207.20 lbs
~0 Gs
|
| 20 mm |
58.47 kg / 128.90 lbs
4 884 Gs
|
8.77 kg / 19.34 lbs
8770 g / 86.0 N
|
52.62 kg / 116.01 lbs
~0 Gs
|
| 50 mm |
8.61 kg / 18.98 lbs
1 874 Gs
|
1.29 kg / 2.85 lbs
1291 g / 12.7 N
|
7.75 kg / 17.08 lbs
~0 Gs
|
| 60 mm |
4.72 kg / 10.41 lbs
1 388 Gs
|
0.71 kg / 1.56 lbs
708 g / 6.9 N
|
4.25 kg / 9.37 lbs
~0 Gs
|
| 70 mm |
2.68 kg / 5.91 lbs
1 046 Gs
|
0.40 kg / 0.89 lbs
402 g / 3.9 N
|
2.41 kg / 5.32 lbs
~0 Gs
|
| 80 mm |
1.58 kg / 3.48 lbs
803 Gs
|
0.24 kg / 0.52 lbs
237 g / 2.3 N
|
1.42 kg / 3.14 lbs
~0 Gs
|
| 90 mm |
0.96 kg / 2.12 lbs
627 Gs
|
0.14 kg / 0.32 lbs
145 g / 1.4 N
|
0.87 kg / 1.91 lbs
~0 Gs
|
| 100 mm |
0.61 kg / 1.34 lbs
497 Gs
|
0.09 kg / 0.20 lbs
91 g / 0.9 N
|
0.55 kg / 1.20 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 45x20 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 22.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 17.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 14.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 10.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 45x20 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.34 km/h
(5.37 m/s)
|
3.44 J | |
| 30 mm |
28.41 km/h
(7.89 m/s)
|
7.43 J | |
| 50 mm |
36.12 km/h
(10.03 m/s)
|
12.01 J | |
| 100 mm |
50.98 km/h
(14.16 m/s)
|
23.92 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 45x20 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 45x20 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 66 952 Mx | 669.5 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 45x20 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 60.94 kg | Standard |
| Woda (dno rzeki) |
69.78 kg
(+8.84 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o idealnie gładkiej powierzchni kontaktu
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Pole magnetyczne a elektronika
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Moc przyciągania
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Podatność na pękanie
Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Uwaga medyczna
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Trwała utrata siły
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i siłę przyciągania.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
