MW 40x8 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010069
GTIN/EAN: 5906301810681
Średnica Ø
40 mm [±0,1 mm]
Wysokość
8 mm [±0,1 mm]
Waga
75.4 g
Kierunek magnesowania
↑ osiowy
Udźwig
20.43 kg / 200.39 N
Indukcja magnetyczna
230.22 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
31.27 ZŁ z VAT / szt. + cena za transport
25.42 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
alternatywnie daj znać za pomocą
nasz formularz online
w sekcji kontakt.
Siłę i wygląd magnesu obliczysz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 40x8 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x8 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010069 |
| GTIN/EAN | 5906301810681 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 8 mm [±0,1 mm] |
| Waga | 75.4 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 20.43 kg / 200.39 N |
| Indukcja magnetyczna ~ ? | 230.22 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Niniejsze wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 40x8 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
miażdżący |
| 1 mm |
2235 Gs
223.5 mT
|
19.25 kg / 42.44 lbs
19252.0 g / 188.9 N
|
miażdżący |
| 2 mm |
2156 Gs
215.6 mT
|
17.92 kg / 39.50 lbs
17917.4 g / 175.8 N
|
miażdżący |
| 3 mm |
2068 Gs
206.8 mT
|
16.49 kg / 36.36 lbs
16490.6 g / 161.8 N
|
miażdżący |
| 5 mm |
1875 Gs
187.5 mT
|
13.56 kg / 29.89 lbs
13556.7 g / 133.0 N
|
miażdżący |
| 10 mm |
1375 Gs
137.5 mT
|
7.29 kg / 16.07 lbs
7287.4 g / 71.5 N
|
uwaga |
| 15 mm |
959 Gs
95.9 mT
|
3.54 kg / 7.81 lbs
3542.3 g / 34.8 N
|
uwaga |
| 20 mm |
661 Gs
66.1 mT
|
1.68 kg / 3.71 lbs
1684.9 g / 16.5 N
|
bezpieczny |
| 30 mm |
328 Gs
32.8 mT
|
0.41 kg / 0.91 lbs
414.2 g / 4.1 N
|
bezpieczny |
| 50 mm |
105 Gs
10.5 mT
|
0.04 kg / 0.09 lbs
42.3 g / 0.4 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 40x8 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| 1 mm | Stal (~0.2) |
3.85 kg / 8.49 lbs
3850.0 g / 37.8 N
|
| 2 mm | Stal (~0.2) |
3.58 kg / 7.90 lbs
3584.0 g / 35.2 N
|
| 3 mm | Stal (~0.2) |
3.30 kg / 7.27 lbs
3298.0 g / 32.4 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 5.98 lbs
2712.0 g / 26.6 N
|
| 10 mm | Stal (~0.2) |
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| 15 mm | Stal (~0.2) |
0.71 kg / 1.56 lbs
708.0 g / 6.9 N
|
| 20 mm | Stal (~0.2) |
0.34 kg / 0.74 lbs
336.0 g / 3.3 N
|
| 30 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 40x8 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
6.13 kg / 13.51 lbs
6129.0 g / 60.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.09 kg / 9.01 lbs
4086.0 g / 40.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.04 kg / 4.50 lbs
2043.0 g / 20.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
10.22 kg / 22.52 lbs
10215.0 g / 100.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 40x8 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.02 kg / 2.25 lbs
1021.5 g / 10.0 N
|
| 1 mm |
|
2.55 kg / 5.63 lbs
2553.8 g / 25.1 N
|
| 2 mm |
|
5.11 kg / 11.26 lbs
5107.5 g / 50.1 N
|
| 3 mm |
|
7.66 kg / 16.89 lbs
7661.3 g / 75.2 N
|
| 5 mm |
|
12.77 kg / 28.15 lbs
12768.8 g / 125.3 N
|
| 10 mm |
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
| 11 mm |
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
| 12 mm |
|
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 40x8 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.43 kg / 45.04 lbs
20430.0 g / 200.4 N
|
OK |
| 40 °C | -2.2% |
19.98 kg / 44.05 lbs
19980.5 g / 196.0 N
|
OK |
| 60 °C | -4.4% |
19.53 kg / 43.06 lbs
19531.1 g / 191.6 N
|
|
| 80 °C | -6.6% |
19.08 kg / 42.07 lbs
19081.6 g / 187.2 N
|
|
| 100 °C | -28.8% |
14.55 kg / 32.07 lbs
14546.2 g / 142.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 40x8 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
41.05 kg / 90.51 lbs
3 871 Gs
|
6.16 kg / 13.58 lbs
6158 g / 60.4 N
|
N/A |
| 1 mm |
39.92 kg / 88.02 lbs
4 540 Gs
|
5.99 kg / 13.20 lbs
5989 g / 58.7 N
|
35.93 kg / 79.22 lbs
~0 Gs
|
| 2 mm |
38.69 kg / 85.29 lbs
4 469 Gs
|
5.80 kg / 12.79 lbs
5803 g / 56.9 N
|
34.82 kg / 76.76 lbs
~0 Gs
|
| 3 mm |
37.38 kg / 82.40 lbs
4 393 Gs
|
5.61 kg / 12.36 lbs
5606 g / 55.0 N
|
33.64 kg / 74.16 lbs
~0 Gs
|
| 5 mm |
34.59 kg / 76.25 lbs
4 226 Gs
|
5.19 kg / 11.44 lbs
5188 g / 50.9 N
|
31.13 kg / 68.63 lbs
~0 Gs
|
| 10 mm |
27.24 kg / 60.06 lbs
3 750 Gs
|
4.09 kg / 9.01 lbs
4086 g / 40.1 N
|
24.52 kg / 54.05 lbs
~0 Gs
|
| 20 mm |
14.64 kg / 32.28 lbs
2 750 Gs
|
2.20 kg / 4.84 lbs
2197 g / 21.5 N
|
13.18 kg / 29.06 lbs
~0 Gs
|
| 50 mm |
1.65 kg / 3.63 lbs
922 Gs
|
0.25 kg / 0.54 lbs
247 g / 2.4 N
|
1.48 kg / 3.26 lbs
~0 Gs
|
| 60 mm |
0.83 kg / 1.84 lbs
656 Gs
|
0.12 kg / 0.28 lbs
125 g / 1.2 N
|
0.75 kg / 1.65 lbs
~0 Gs
|
| 70 mm |
0.44 kg / 0.97 lbs
477 Gs
|
0.07 kg / 0.15 lbs
66 g / 0.6 N
|
0.40 kg / 0.87 lbs
~0 Gs
|
| 80 mm |
0.24 kg / 0.54 lbs
355 Gs
|
0.04 kg / 0.08 lbs
37 g / 0.4 N
|
0.22 kg / 0.49 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
270 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
210 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 40x8 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 40x8 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.96 km/h
(5.54 m/s)
|
1.16 J | |
| 30 mm |
29.12 km/h
(8.09 m/s)
|
2.47 J | |
| 50 mm |
37.17 km/h
(10.32 m/s)
|
4.02 J | |
| 100 mm |
52.50 km/h
(14.58 m/s)
|
8.02 J |
Tabela 9: Parametry powłoki (trwałość)
MW 40x8 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 40x8 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 33 553 Mx | 335.5 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 40x8 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 20.43 kg | Standard |
| Woda (dno rzeki) |
23.39 kg
(+2.96 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (wg testów).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o grubości przynajmniej 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez powłok)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- przy temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Odstęp (między magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża udźwig.
Ostrzeżenia
To nie jest zabawka
Bezwzględnie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Implanty medyczne
Osoby z rozrusznikiem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zakłócić pracę implantu.
Ogromna siła
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Dla uczulonych
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Nie wierć w magnesach
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Ryzyko pęknięcia
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Uszkodzenia ciała
Duże magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Bezpieczny dystans
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
