MW 40x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010066
GTIN/EAN: 5906301810650
Średnica Ø
40 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
94.25 g
Kierunek magnesowania
↑ osiowy
Udźwig
27.73 kg / 271.99 N
Indukcja magnetyczna
277.22 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
36.57 ZŁ z VAT / szt. + cena za transport
29.73 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo zostaw wiadomość poprzez
formularz kontaktowy
przez naszą stronę.
Masę a także formę magnesów neodymowych zobaczysz u nas w
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Parametry produktu - MW 40x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 40x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010066 |
| GTIN/EAN | 5906301810650 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 40 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 94.25 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 27.73 kg / 271.99 N |
| Indukcja magnetyczna ~ ? | 277.22 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Przedstawione wartości są bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 40x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2772 Gs
277.2 mT
|
27.73 kg / 27730.0 g
272.0 N
|
miażdżący |
| 1 mm |
2678 Gs
267.8 mT
|
25.89 kg / 25889.6 g
254.0 N
|
miażdżący |
| 2 mm |
2573 Gs
257.3 mT
|
23.89 kg / 23893.3 g
234.4 N
|
miażdżący |
| 3 mm |
2459 Gs
245.9 mT
|
21.83 kg / 21827.6 g
214.1 N
|
miażdżący |
| 5 mm |
2216 Gs
221.6 mT
|
17.73 kg / 17728.1 g
173.9 N
|
miażdżący |
| 10 mm |
1611 Gs
161.1 mT
|
9.37 kg / 9371.0 g
91.9 N
|
mocny |
| 15 mm |
1121 Gs
112.1 mT
|
4.54 kg / 4538.6 g
44.5 N
|
mocny |
| 20 mm |
775 Gs
77.5 mT
|
2.17 kg / 2165.8 g
21.2 N
|
mocny |
| 30 mm |
387 Gs
38.7 mT
|
0.54 kg / 539.8 g
5.3 N
|
bezpieczny |
| 50 mm |
125 Gs
12.5 mT
|
0.06 kg / 56.6 g
0.6 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 40x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
5.55 kg / 5546.0 g
54.4 N
|
| 1 mm | Stal (~0.2) |
5.18 kg / 5178.0 g
50.8 N
|
| 2 mm | Stal (~0.2) |
4.78 kg / 4778.0 g
46.9 N
|
| 3 mm | Stal (~0.2) |
4.37 kg / 4366.0 g
42.8 N
|
| 5 mm | Stal (~0.2) |
3.55 kg / 3546.0 g
34.8 N
|
| 10 mm | Stal (~0.2) |
1.87 kg / 1874.0 g
18.4 N
|
| 15 mm | Stal (~0.2) |
0.91 kg / 908.0 g
8.9 N
|
| 20 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 30 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 40x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
8.32 kg / 8319.0 g
81.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
5.55 kg / 5546.0 g
54.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.77 kg / 2773.0 g
27.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
13.87 kg / 13865.0 g
136.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 40x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.39 kg / 1386.5 g
13.6 N
|
| 1 mm |
|
3.47 kg / 3466.3 g
34.0 N
|
| 2 mm |
|
6.93 kg / 6932.5 g
68.0 N
|
| 5 mm |
|
17.33 kg / 17331.3 g
170.0 N
|
| 10 mm |
|
27.73 kg / 27730.0 g
272.0 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 40x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
27.73 kg / 27730.0 g
272.0 N
|
OK |
| 40 °C | -2.2% |
27.12 kg / 27119.9 g
266.0 N
|
OK |
| 60 °C | -4.4% |
26.51 kg / 26509.9 g
260.1 N
|
|
| 80 °C | -6.6% |
25.90 kg / 25899.8 g
254.1 N
|
|
| 100 °C | -28.8% |
19.74 kg / 19743.8 g
193.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 40x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
59.52 kg / 59523 g
583.9 N
4 382 Gs
|
N/A |
| 1 mm |
57.61 kg / 57613 g
565.2 N
5 454 Gs
|
51.85 kg / 51852 g
508.7 N
~0 Gs
|
| 2 mm |
55.57 kg / 55572 g
545.2 N
5 357 Gs
|
50.01 kg / 50015 g
490.6 N
~0 Gs
|
| 3 mm |
53.46 kg / 53457 g
524.4 N
5 254 Gs
|
48.11 kg / 48111 g
472.0 N
~0 Gs
|
| 5 mm |
49.08 kg / 49080 g
481.5 N
5 034 Gs
|
44.17 kg / 44172 g
433.3 N
~0 Gs
|
| 10 mm |
38.05 kg / 38053 g
373.3 N
4 433 Gs
|
34.25 kg / 34248 g
336.0 N
~0 Gs
|
| 20 mm |
20.11 kg / 20115 g
197.3 N
3 223 Gs
|
18.10 kg / 18103 g
177.6 N
~0 Gs
|
| 50 mm |
2.27 kg / 2274 g
22.3 N
1 083 Gs
|
2.05 kg / 2046 g
20.1 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 40x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 40x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.63 km/h
(5.73 m/s)
|
1.55 J | |
| 30 mm |
30.32 km/h
(8.42 m/s)
|
3.34 J | |
| 50 mm |
38.73 km/h
(10.76 m/s)
|
5.45 J | |
| 100 mm |
54.71 km/h
(15.20 m/s)
|
10.88 J |
Tabela 9: Odporność na korozję
MW 40x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 40x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 38 700 Mx | 387.0 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 40x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 27.73 kg | Standard |
| Woda (dno rzeki) |
31.75 kg
(+4.02 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- z płaszczyzną idealnie równą
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Szczelina – obecność jakiejkolwiek warstwy (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Unikaj kontaktu w przypadku alergii
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Zagrożenie zapłonem
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Niszczenie danych
Bardzo silne oddziaływanie może usunąć informacje na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Smartfony i tablety
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i urządzeń GPS.
Produkt nie dla dzieci
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Interferencja medyczna
Pacjenci z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może rozregulować działanie implantu.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Maksymalna temperatura
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
