MW 38x12 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010060
GTIN/EAN: 5906301810599
Średnica Ø
38 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
102.07 g
Kierunek magnesowania
↑ osiowy
Udźwig
32.79 kg / 321.71 N
Indukcja magnetyczna
331.00 mT / 3310 Gs
Powłoka
[NiCuNi] nikiel
32.10 ZŁ z VAT / szt. + cena za transport
26.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
alternatywnie skontaktuj się poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Masę oraz budowę magnesów neodymowych skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MW 38x12 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x12 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010060 |
| GTIN/EAN | 5906301810599 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 102.07 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 32.79 kg / 321.71 N |
| Indukcja magnetyczna ~ ? | 331.00 mT / 3310 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione wartości stanowią wynik symulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 38x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3309 Gs
330.9 mT
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
miażdżący |
| 1 mm |
3175 Gs
317.5 mT
|
30.18 kg / 66.54 lbs
30182.9 g / 296.1 N
|
miażdżący |
| 2 mm |
3029 Gs
302.9 mT
|
27.46 kg / 60.55 lbs
27464.0 g / 269.4 N
|
miażdżący |
| 3 mm |
2875 Gs
287.5 mT
|
24.74 kg / 54.55 lbs
24742.8 g / 242.7 N
|
miażdżący |
| 5 mm |
2556 Gs
255.6 mT
|
19.56 kg / 43.13 lbs
19563.2 g / 191.9 N
|
miażdżący |
| 10 mm |
1805 Gs
180.5 mT
|
9.75 kg / 21.50 lbs
9750.4 g / 95.7 N
|
mocny |
| 15 mm |
1229 Gs
122.9 mT
|
4.52 kg / 9.96 lbs
4519.1 g / 44.3 N
|
mocny |
| 20 mm |
836 Gs
83.6 mT
|
2.09 kg / 4.61 lbs
2092.9 g / 20.5 N
|
mocny |
| 30 mm |
411 Gs
41.1 mT
|
0.51 kg / 1.11 lbs
505.7 g / 5.0 N
|
słaby uchwyt |
| 50 mm |
132 Gs
13.2 mT
|
0.05 kg / 0.12 lbs
52.4 g / 0.5 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 38x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.56 kg / 14.46 lbs
6558.0 g / 64.3 N
|
| 1 mm | Stal (~0.2) |
6.04 kg / 13.31 lbs
6036.0 g / 59.2 N
|
| 2 mm | Stal (~0.2) |
5.49 kg / 12.11 lbs
5492.0 g / 53.9 N
|
| 3 mm | Stal (~0.2) |
4.95 kg / 10.91 lbs
4948.0 g / 48.5 N
|
| 5 mm | Stal (~0.2) |
3.91 kg / 8.62 lbs
3912.0 g / 38.4 N
|
| 10 mm | Stal (~0.2) |
1.95 kg / 4.30 lbs
1950.0 g / 19.1 N
|
| 15 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
904.0 g / 8.9 N
|
| 20 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 38x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.84 kg / 21.69 lbs
9837.0 g / 96.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.56 kg / 14.46 lbs
6558.0 g / 64.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.28 kg / 7.23 lbs
3279.0 g / 32.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
16.40 kg / 36.14 lbs
16395.0 g / 160.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 38x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.64 kg / 3.61 lbs
1639.5 g / 16.1 N
|
| 1 mm |
|
4.10 kg / 9.04 lbs
4098.8 g / 40.2 N
|
| 2 mm |
|
8.20 kg / 18.07 lbs
8197.5 g / 80.4 N
|
| 3 mm |
|
12.30 kg / 27.11 lbs
12296.3 g / 120.6 N
|
| 5 mm |
|
20.49 kg / 45.18 lbs
20493.8 g / 201.0 N
|
| 10 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
| 11 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
| 12 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 38x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
OK |
| 40 °C | -2.2% |
32.07 kg / 70.70 lbs
32068.6 g / 314.6 N
|
OK |
| 60 °C | -4.4% |
31.35 kg / 69.11 lbs
31347.2 g / 307.5 N
|
|
| 80 °C | -6.6% |
30.63 kg / 67.52 lbs
30625.9 g / 300.4 N
|
|
| 100 °C | -28.8% |
23.35 kg / 51.47 lbs
23346.5 g / 229.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 38x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
76.58 kg / 168.83 lbs
4 859 Gs
|
11.49 kg / 25.32 lbs
11487 g / 112.7 N
|
N/A |
| 1 mm |
73.60 kg / 162.27 lbs
6 489 Gs
|
11.04 kg / 24.34 lbs
11040 g / 108.3 N
|
66.24 kg / 146.04 lbs
~0 Gs
|
| 2 mm |
70.49 kg / 155.40 lbs
6 350 Gs
|
10.57 kg / 23.31 lbs
10573 g / 103.7 N
|
63.44 kg / 139.86 lbs
~0 Gs
|
| 3 mm |
67.33 kg / 148.43 lbs
6 206 Gs
|
10.10 kg / 22.26 lbs
10099 g / 99.1 N
|
60.59 kg / 133.59 lbs
~0 Gs
|
| 5 mm |
60.95 kg / 134.38 lbs
5 905 Gs
|
9.14 kg / 20.16 lbs
9143 g / 89.7 N
|
54.86 kg / 120.94 lbs
~0 Gs
|
| 10 mm |
45.69 kg / 100.73 lbs
5 113 Gs
|
6.85 kg / 15.11 lbs
6853 g / 67.2 N
|
41.12 kg / 90.65 lbs
~0 Gs
|
| 20 mm |
22.77 kg / 50.20 lbs
3 609 Gs
|
3.42 kg / 7.53 lbs
3416 g / 33.5 N
|
20.49 kg / 45.18 lbs
~0 Gs
|
| 50 mm |
2.34 kg / 5.17 lbs
1 158 Gs
|
0.35 kg / 0.78 lbs
352 g / 3.5 N
|
2.11 kg / 4.65 lbs
~0 Gs
|
| 60 mm |
1.18 kg / 2.60 lbs
822 Gs
|
0.18 kg / 0.39 lbs
177 g / 1.7 N
|
1.06 kg / 2.34 lbs
~0 Gs
|
| 70 mm |
0.63 kg / 1.38 lbs
598 Gs
|
0.09 kg / 0.21 lbs
94 g / 0.9 N
|
0.56 kg / 1.24 lbs
~0 Gs
|
| 80 mm |
0.35 kg / 0.77 lbs
446 Gs
|
0.05 kg / 0.12 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 90 mm |
0.20 kg / 0.45 lbs
340 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.40 lbs
~0 Gs
|
| 100 mm |
0.12 kg / 0.27 lbs
264 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 38x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 38x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.17 km/h
(5.88 m/s)
|
1.76 J | |
| 30 mm |
31.61 km/h
(8.78 m/s)
|
3.93 J | |
| 50 mm |
40.46 km/h
(11.24 m/s)
|
6.45 J | |
| 100 mm |
57.16 km/h
(15.88 m/s)
|
12.87 J |
Tabela 9: Parametry powłoki (trwałość)
MW 38x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 38x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 40 045 Mx | 400.5 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 38x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 32.79 kg | Standard |
| Woda (dno rzeki) |
37.54 kg
(+4.75 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Dzięki powłoce (NiCuNi, Au, srebro) mają estetyczny, metaliczny wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni styku
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Odstęp (między magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) powoduje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka blacha nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Instrukcja bezpiecznej obsługi magnesów
Poważne obrażenia
Ryzyko obrażeń: Moc ściskania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Uczulenie na powłokę
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Ryzyko pożaru
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Trwała utrata siły
Monitoruj warunki termiczne. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe działają z daleka i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Kompas i GPS
Pamiętaj: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Zagrożenie dla najmłodszych
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od dzieci i zwierząt.
