MW 38x12 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010060
GTIN/EAN: 5906301810599
Średnica Ø
38 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
102.07 g
Kierunek magnesowania
↑ osiowy
Udźwig
32.79 kg / 321.71 N
Indukcja magnetyczna
331.00 mT / 3310 Gs
Powłoka
[NiCuNi] nikiel
32.10 ZŁ z VAT / szt. + cena za transport
26.10 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo skontaktuj się korzystając z
formularz
przez naszą stronę.
Siłę oraz wygląd magnesów przetestujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MW 38x12 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 38x12 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010060 |
| GTIN/EAN | 5906301810599 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 38 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 102.07 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 32.79 kg / 321.71 N |
| Indukcja magnetyczna ~ ? | 331.00 mT / 3310 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze wartości stanowią bezpośredni efekt kalkulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 38x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3309 Gs
330.9 mT
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
niebezpieczny! |
| 1 mm |
3175 Gs
317.5 mT
|
30.18 kg / 66.54 lbs
30182.9 g / 296.1 N
|
niebezpieczny! |
| 2 mm |
3029 Gs
302.9 mT
|
27.46 kg / 60.55 lbs
27464.0 g / 269.4 N
|
niebezpieczny! |
| 3 mm |
2875 Gs
287.5 mT
|
24.74 kg / 54.55 lbs
24742.8 g / 242.7 N
|
niebezpieczny! |
| 5 mm |
2556 Gs
255.6 mT
|
19.56 kg / 43.13 lbs
19563.2 g / 191.9 N
|
niebezpieczny! |
| 10 mm |
1805 Gs
180.5 mT
|
9.75 kg / 21.50 lbs
9750.4 g / 95.7 N
|
mocny |
| 15 mm |
1229 Gs
122.9 mT
|
4.52 kg / 9.96 lbs
4519.1 g / 44.3 N
|
mocny |
| 20 mm |
836 Gs
83.6 mT
|
2.09 kg / 4.61 lbs
2092.9 g / 20.5 N
|
mocny |
| 30 mm |
411 Gs
41.1 mT
|
0.51 kg / 1.11 lbs
505.7 g / 5.0 N
|
niskie ryzyko |
| 50 mm |
132 Gs
13.2 mT
|
0.05 kg / 0.12 lbs
52.4 g / 0.5 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 38x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.56 kg / 14.46 lbs
6558.0 g / 64.3 N
|
| 1 mm | Stal (~0.2) |
6.04 kg / 13.31 lbs
6036.0 g / 59.2 N
|
| 2 mm | Stal (~0.2) |
5.49 kg / 12.11 lbs
5492.0 g / 53.9 N
|
| 3 mm | Stal (~0.2) |
4.95 kg / 10.91 lbs
4948.0 g / 48.5 N
|
| 5 mm | Stal (~0.2) |
3.91 kg / 8.62 lbs
3912.0 g / 38.4 N
|
| 10 mm | Stal (~0.2) |
1.95 kg / 4.30 lbs
1950.0 g / 19.1 N
|
| 15 mm | Stal (~0.2) |
0.90 kg / 1.99 lbs
904.0 g / 8.9 N
|
| 20 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 38x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.84 kg / 21.69 lbs
9837.0 g / 96.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.56 kg / 14.46 lbs
6558.0 g / 64.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.28 kg / 7.23 lbs
3279.0 g / 32.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
16.40 kg / 36.14 lbs
16395.0 g / 160.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 38x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.64 kg / 3.61 lbs
1639.5 g / 16.1 N
|
| 1 mm |
|
4.10 kg / 9.04 lbs
4098.8 g / 40.2 N
|
| 2 mm |
|
8.20 kg / 18.07 lbs
8197.5 g / 80.4 N
|
| 3 mm |
|
12.30 kg / 27.11 lbs
12296.3 g / 120.6 N
|
| 5 mm |
|
20.49 kg / 45.18 lbs
20493.8 g / 201.0 N
|
| 10 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
| 11 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
| 12 mm |
|
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 38x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
32.79 kg / 72.29 lbs
32790.0 g / 321.7 N
|
OK |
| 40 °C | -2.2% |
32.07 kg / 70.70 lbs
32068.6 g / 314.6 N
|
OK |
| 60 °C | -4.4% |
31.35 kg / 69.11 lbs
31347.2 g / 307.5 N
|
|
| 80 °C | -6.6% |
30.63 kg / 67.52 lbs
30625.9 g / 300.4 N
|
|
| 100 °C | -28.8% |
23.35 kg / 51.47 lbs
23346.5 g / 229.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 38x12 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
76.58 kg / 168.83 lbs
4 859 Gs
|
11.49 kg / 25.32 lbs
11487 g / 112.7 N
|
N/A |
| 1 mm |
73.60 kg / 162.27 lbs
6 489 Gs
|
11.04 kg / 24.34 lbs
11040 g / 108.3 N
|
66.24 kg / 146.04 lbs
~0 Gs
|
| 2 mm |
70.49 kg / 155.40 lbs
6 350 Gs
|
10.57 kg / 23.31 lbs
10573 g / 103.7 N
|
63.44 kg / 139.86 lbs
~0 Gs
|
| 3 mm |
67.33 kg / 148.43 lbs
6 206 Gs
|
10.10 kg / 22.26 lbs
10099 g / 99.1 N
|
60.59 kg / 133.59 lbs
~0 Gs
|
| 5 mm |
60.95 kg / 134.38 lbs
5 905 Gs
|
9.14 kg / 20.16 lbs
9143 g / 89.7 N
|
54.86 kg / 120.94 lbs
~0 Gs
|
| 10 mm |
45.69 kg / 100.73 lbs
5 113 Gs
|
6.85 kg / 15.11 lbs
6853 g / 67.2 N
|
41.12 kg / 90.65 lbs
~0 Gs
|
| 20 mm |
22.77 kg / 50.20 lbs
3 609 Gs
|
3.42 kg / 7.53 lbs
3416 g / 33.5 N
|
20.49 kg / 45.18 lbs
~0 Gs
|
| 50 mm |
2.34 kg / 5.17 lbs
1 158 Gs
|
0.35 kg / 0.78 lbs
352 g / 3.5 N
|
2.11 kg / 4.65 lbs
~0 Gs
|
| 60 mm |
1.18 kg / 2.60 lbs
822 Gs
|
0.18 kg / 0.39 lbs
177 g / 1.7 N
|
1.06 kg / 2.34 lbs
~0 Gs
|
| 70 mm |
0.63 kg / 1.38 lbs
598 Gs
|
0.09 kg / 0.21 lbs
94 g / 0.9 N
|
0.56 kg / 1.24 lbs
~0 Gs
|
| 80 mm |
0.35 kg / 0.77 lbs
446 Gs
|
0.05 kg / 0.12 lbs
52 g / 0.5 N
|
0.31 kg / 0.69 lbs
~0 Gs
|
| 90 mm |
0.20 kg / 0.45 lbs
340 Gs
|
0.03 kg / 0.07 lbs
30 g / 0.3 N
|
0.18 kg / 0.40 lbs
~0 Gs
|
| 100 mm |
0.12 kg / 0.27 lbs
264 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 38x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 7.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 38x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.17 km/h
(5.88 m/s)
|
1.76 J | |
| 30 mm |
31.61 km/h
(8.78 m/s)
|
3.93 J | |
| 50 mm |
40.46 km/h
(11.24 m/s)
|
6.45 J | |
| 100 mm |
57.16 km/h
(15.88 m/s)
|
12.87 J |
Tabela 9: Odporność na korozję
MW 38x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 38x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 40 045 Mx | 400.5 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 38x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 32.79 kg | Standard |
| Woda (dno rzeki) |
37.54 kg
(+4.75 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po 10 lat spadek mocy wynosi zaledwie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je wykonać w rozmaitych formach, idealnych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego warto stosować obudowy lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina – obecność ciała obcego (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Urządzenia elektroniczne
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, czasomierze).
Ogromna siła
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Zagrożenie dla najmłodszych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Alergia na nikiel
Część populacji ma alergię kontaktową na nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może skutkować zaczerwienienie skóry. Rekomendujemy używanie rękawiczek ochronnych.
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie wybuchem pyłu
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
