MW 35x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010059
GTIN/EAN: 5906301810582
Średnica Ø
35 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
36.08 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.25 kg / 90.73 N
Indukcja magnetyczna
170.30 mT / 1703 Gs
Powłoka
[NiCuNi] nikiel
13.81 ZŁ z VAT / szt. + cena za transport
11.23 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
alternatywnie pisz za pomocą
formularz zapytania
na naszej stronie.
Moc a także wygląd magnesów skontrolujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Dane techniczne - MW 35x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 35x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010059 |
| GTIN/EAN | 5906301810582 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 35 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 36.08 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.25 kg / 90.73 N |
| Indukcja magnetyczna ~ ? | 170.30 mT / 1703 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Poniższe informacje są rezultat symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 35x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1703 Gs
170.3 mT
|
9.25 kg / 9250.0 g
90.7 N
|
mocny |
| 1 mm |
1657 Gs
165.7 mT
|
8.76 kg / 8759.4 g
85.9 N
|
mocny |
| 2 mm |
1599 Gs
159.9 mT
|
8.15 kg / 8152.2 g
80.0 N
|
mocny |
| 3 mm |
1530 Gs
153.0 mT
|
7.47 kg / 7468.5 g
73.3 N
|
mocny |
| 5 mm |
1373 Gs
137.3 mT
|
6.01 kg / 6011.5 g
59.0 N
|
mocny |
| 10 mm |
959 Gs
95.9 mT
|
2.93 kg / 2932.7 g
28.8 N
|
mocny |
| 15 mm |
631 Gs
63.1 mT
|
1.27 kg / 1270.4 g
12.5 N
|
słaby uchwyt |
| 20 mm |
413 Gs
41.3 mT
|
0.54 kg / 544.8 g
5.3 N
|
słaby uchwyt |
| 30 mm |
190 Gs
19.0 mT
|
0.12 kg / 115.2 g
1.1 N
|
słaby uchwyt |
| 50 mm |
56 Gs
5.6 mT
|
0.01 kg / 10.1 g
0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 35x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.85 kg / 1850.0 g
18.1 N
|
| 1 mm | Stal (~0.2) |
1.75 kg / 1752.0 g
17.2 N
|
| 2 mm | Stal (~0.2) |
1.63 kg / 1630.0 g
16.0 N
|
| 3 mm | Stal (~0.2) |
1.49 kg / 1494.0 g
14.7 N
|
| 5 mm | Stal (~0.2) |
1.20 kg / 1202.0 g
11.8 N
|
| 10 mm | Stal (~0.2) |
0.59 kg / 586.0 g
5.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 254.0 g
2.5 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MW 35x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.78 kg / 2775.0 g
27.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.85 kg / 1850.0 g
18.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 925.0 g
9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.63 kg / 4625.0 g
45.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 35x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 925.0 g
9.1 N
|
| 1 mm |
|
2.31 kg / 2312.5 g
22.7 N
|
| 2 mm |
|
4.63 kg / 4625.0 g
45.4 N
|
| 5 mm |
|
9.25 kg / 9250.0 g
90.7 N
|
| 10 mm |
|
9.25 kg / 9250.0 g
90.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 35x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.25 kg / 9250.0 g
90.7 N
|
OK |
| 40 °C | -2.2% |
9.05 kg / 9046.5 g
88.7 N
|
OK |
| 60 °C | -4.4% |
8.84 kg / 8843.0 g
86.7 N
|
|
| 80 °C | -6.6% |
8.64 kg / 8639.5 g
84.8 N
|
|
| 100 °C | -28.8% |
6.59 kg / 6586.0 g
64.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 35x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.20 kg / 17200 g
168.7 N
3 075 Gs
|
N/A |
| 1 mm |
16.78 kg / 16778 g
164.6 N
3 364 Gs
|
15.10 kg / 15100 g
148.1 N
~0 Gs
|
| 2 mm |
16.29 kg / 16288 g
159.8 N
3 314 Gs
|
14.66 kg / 14659 g
143.8 N
~0 Gs
|
| 3 mm |
15.75 kg / 15745 g
154.5 N
3 259 Gs
|
14.17 kg / 14171 g
139.0 N
~0 Gs
|
| 5 mm |
14.54 kg / 14536 g
142.6 N
3 131 Gs
|
13.08 kg / 13083 g
128.3 N
~0 Gs
|
| 10 mm |
11.18 kg / 11178 g
109.7 N
2 746 Gs
|
10.06 kg / 10060 g
98.7 N
~0 Gs
|
| 20 mm |
5.45 kg / 5453 g
53.5 N
1 918 Gs
|
4.91 kg / 4908 g
48.1 N
~0 Gs
|
| 50 mm |
0.45 kg / 452 g
4.4 N
552 Gs
|
0.41 kg / 407 g
4.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 35x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 35x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.08 km/h
(5.30 m/s)
|
0.51 J | |
| 30 mm |
28.19 km/h
(7.83 m/s)
|
1.11 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
1.82 J | |
| 100 mm |
51.07 km/h
(14.18 m/s)
|
3.63 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 35x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 35x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 291 Mx | 202.9 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 35x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.25 kg | Standard |
| Woda (dno rzeki) |
10.59 kg
(+1.34 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi jedynie ~1% (wg testów).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy upadku, dlatego zalecamy osłony lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej pole magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy zerowej szczelinie (brak zanieczyszczeń)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w neutralnych warunkach termicznych
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Gładkość podłoża – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża nośność.
Bezpieczna praca przy magnesach neodymowych
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Trwała utrata siły
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i siłę przyciągania.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Zagrożenie dla elektroniki
Potężne oddziaływanie może usunąć informacje na kartach kredytowych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Uszkodzenia czujników
Uwaga: magnesy neodymowe wytwarzają pole, które zakłócają elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Dla uczulonych
Niektóre osoby wykazuje alergię kontaktową na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Sugerujemy stosowanie rękawiczek ochronnych.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
