MW 35x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010059
GTIN/EAN: 5906301810582
Średnica Ø
35 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
36.08 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.25 kg / 90.73 N
Indukcja magnetyczna
170.30 mT / 1703 Gs
Powłoka
[NiCuNi] nikiel
13.81 ZŁ z VAT / szt. + cena za transport
11.23 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub zostaw wiadomość za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Udźwig a także formę elementów magnetycznych zobaczysz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry techniczne - MW 35x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 35x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010059 |
| GTIN/EAN | 5906301810582 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 35 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 36.08 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.25 kg / 90.73 N |
| Indukcja magnetyczna ~ ? | 170.30 mT / 1703 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - parametry techniczne
Przedstawione informacje stanowią bezpośredni efekt symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 35x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1703 Gs
170.3 mT
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
średnie ryzyko |
| 1 mm |
1657 Gs
165.7 mT
|
8.76 kg / 19.31 lbs
8759.4 g / 85.9 N
|
średnie ryzyko |
| 2 mm |
1599 Gs
159.9 mT
|
8.15 kg / 17.97 lbs
8152.2 g / 80.0 N
|
średnie ryzyko |
| 3 mm |
1530 Gs
153.0 mT
|
7.47 kg / 16.47 lbs
7468.5 g / 73.3 N
|
średnie ryzyko |
| 5 mm |
1373 Gs
137.3 mT
|
6.01 kg / 13.25 lbs
6011.5 g / 59.0 N
|
średnie ryzyko |
| 10 mm |
959 Gs
95.9 mT
|
2.93 kg / 6.47 lbs
2932.7 g / 28.8 N
|
średnie ryzyko |
| 15 mm |
631 Gs
63.1 mT
|
1.27 kg / 2.80 lbs
1270.4 g / 12.5 N
|
słaby uchwyt |
| 20 mm |
413 Gs
41.3 mT
|
0.54 kg / 1.20 lbs
544.8 g / 5.3 N
|
słaby uchwyt |
| 30 mm |
190 Gs
19.0 mT
|
0.12 kg / 0.25 lbs
115.2 g / 1.1 N
|
słaby uchwyt |
| 50 mm |
56 Gs
5.6 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 35x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.85 kg / 4.08 lbs
1850.0 g / 18.1 N
|
| 1 mm | Stal (~0.2) |
1.75 kg / 3.86 lbs
1752.0 g / 17.2 N
|
| 2 mm | Stal (~0.2) |
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 3 mm | Stal (~0.2) |
1.49 kg / 3.29 lbs
1494.0 g / 14.7 N
|
| 5 mm | Stal (~0.2) |
1.20 kg / 2.65 lbs
1202.0 g / 11.8 N
|
| 10 mm | Stal (~0.2) |
0.59 kg / 1.29 lbs
586.0 g / 5.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.56 lbs
254.0 g / 2.5 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 35x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.78 kg / 6.12 lbs
2775.0 g / 27.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.85 kg / 4.08 lbs
1850.0 g / 18.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.04 lbs
925.0 g / 9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.63 kg / 10.20 lbs
4625.0 g / 45.4 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 35x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.04 lbs
925.0 g / 9.1 N
|
| 1 mm |
|
2.31 kg / 5.10 lbs
2312.5 g / 22.7 N
|
| 2 mm |
|
4.63 kg / 10.20 lbs
4625.0 g / 45.4 N
|
| 3 mm |
|
6.94 kg / 15.29 lbs
6937.5 g / 68.1 N
|
| 5 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
| 10 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
| 11 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
| 12 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 35x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
OK |
| 40 °C | -2.2% |
9.05 kg / 19.94 lbs
9046.5 g / 88.7 N
|
OK |
| 60 °C | -4.4% |
8.84 kg / 19.50 lbs
8843.0 g / 86.7 N
|
|
| 80 °C | -6.6% |
8.64 kg / 19.05 lbs
8639.5 g / 84.8 N
|
|
| 100 °C | -28.8% |
6.59 kg / 14.52 lbs
6586.0 g / 64.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 35x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.20 kg / 37.92 lbs
3 075 Gs
|
2.58 kg / 5.69 lbs
2580 g / 25.3 N
|
N/A |
| 1 mm |
16.78 kg / 36.99 lbs
3 364 Gs
|
2.52 kg / 5.55 lbs
2517 g / 24.7 N
|
15.10 kg / 33.29 lbs
~0 Gs
|
| 2 mm |
16.29 kg / 35.91 lbs
3 314 Gs
|
2.44 kg / 5.39 lbs
2443 g / 24.0 N
|
14.66 kg / 32.32 lbs
~0 Gs
|
| 3 mm |
15.75 kg / 34.71 lbs
3 259 Gs
|
2.36 kg / 5.21 lbs
2362 g / 23.2 N
|
14.17 kg / 31.24 lbs
~0 Gs
|
| 5 mm |
14.54 kg / 32.05 lbs
3 131 Gs
|
2.18 kg / 4.81 lbs
2180 g / 21.4 N
|
13.08 kg / 28.84 lbs
~0 Gs
|
| 10 mm |
11.18 kg / 24.64 lbs
2 746 Gs
|
1.68 kg / 3.70 lbs
1677 g / 16.4 N
|
10.06 kg / 22.18 lbs
~0 Gs
|
| 20 mm |
5.45 kg / 12.02 lbs
1 918 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 50 mm |
0.45 kg / 1.00 lbs
552 Gs
|
0.07 kg / 0.15 lbs
68 g / 0.7 N
|
0.41 kg / 0.90 lbs
~0 Gs
|
| 60 mm |
0.21 kg / 0.47 lbs
380 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 70 mm |
0.11 kg / 0.24 lbs
269 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 80 mm |
0.06 kg / 0.13 lbs
197 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
147 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
112 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 35x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 35x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.08 km/h
(5.30 m/s)
|
0.51 J | |
| 30 mm |
28.19 km/h
(7.83 m/s)
|
1.11 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
1.82 J | |
| 100 mm |
51.07 km/h
(14.18 m/s)
|
3.63 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 35x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 35x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 291 Mx | 202.9 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 35x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.25 kg | Standard |
| Woda (dno rzeki) |
10.59 kg
(+1.34 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie dekady utrata mocy wynosi zaledwie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki powłoce (NiCuNi, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się równą strukturą
- przy całkowitym braku odstępu (bez farby)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Uwaga na odpryski
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Uszkodzenia czujników
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Niklowa powłoka a alergia
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Nośniki danych
Nie zbliżaj magnesów do dokumentów, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ryzyko złamań
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj poza zasięgiem dzieci i zwierząt.
Ostrzeżenie dla sercowców
Osoby z rozrusznikiem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
