MW 35x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010059
GTIN/EAN: 5906301810582
Średnica Ø
35 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
36.08 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.25 kg / 90.73 N
Indukcja magnetyczna
170.30 mT / 1703 Gs
Powłoka
[NiCuNi] nikiel
13.81 ZŁ z VAT / szt. + cena za transport
11.23 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się poprzez
nasz formularz online
na stronie kontaktowej.
Parametry a także formę magnesów neodymowych zobaczysz w naszym
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne produktu - MW 35x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 35x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010059 |
| GTIN/EAN | 5906301810582 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 35 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 36.08 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.25 kg / 90.73 N |
| Indukcja magnetyczna ~ ? | 170.30 mT / 1703 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - raport
Niniejsze wartości są wynik analizy fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 35x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1703 Gs
170.3 mT
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
mocny |
| 1 mm |
1657 Gs
165.7 mT
|
8.76 kg / 19.31 lbs
8759.4 g / 85.9 N
|
mocny |
| 2 mm |
1599 Gs
159.9 mT
|
8.15 kg / 17.97 lbs
8152.2 g / 80.0 N
|
mocny |
| 3 mm |
1530 Gs
153.0 mT
|
7.47 kg / 16.47 lbs
7468.5 g / 73.3 N
|
mocny |
| 5 mm |
1373 Gs
137.3 mT
|
6.01 kg / 13.25 lbs
6011.5 g / 59.0 N
|
mocny |
| 10 mm |
959 Gs
95.9 mT
|
2.93 kg / 6.47 lbs
2932.7 g / 28.8 N
|
mocny |
| 15 mm |
631 Gs
63.1 mT
|
1.27 kg / 2.80 lbs
1270.4 g / 12.5 N
|
bezpieczny |
| 20 mm |
413 Gs
41.3 mT
|
0.54 kg / 1.20 lbs
544.8 g / 5.3 N
|
bezpieczny |
| 30 mm |
190 Gs
19.0 mT
|
0.12 kg / 0.25 lbs
115.2 g / 1.1 N
|
bezpieczny |
| 50 mm |
56 Gs
5.6 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 35x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.85 kg / 4.08 lbs
1850.0 g / 18.1 N
|
| 1 mm | Stal (~0.2) |
1.75 kg / 3.86 lbs
1752.0 g / 17.2 N
|
| 2 mm | Stal (~0.2) |
1.63 kg / 3.59 lbs
1630.0 g / 16.0 N
|
| 3 mm | Stal (~0.2) |
1.49 kg / 3.29 lbs
1494.0 g / 14.7 N
|
| 5 mm | Stal (~0.2) |
1.20 kg / 2.65 lbs
1202.0 g / 11.8 N
|
| 10 mm | Stal (~0.2) |
0.59 kg / 1.29 lbs
586.0 g / 5.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.56 lbs
254.0 g / 2.5 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 35x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.78 kg / 6.12 lbs
2775.0 g / 27.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.85 kg / 4.08 lbs
1850.0 g / 18.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.04 lbs
925.0 g / 9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.63 kg / 10.20 lbs
4625.0 g / 45.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 35x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.04 lbs
925.0 g / 9.1 N
|
| 1 mm |
|
2.31 kg / 5.10 lbs
2312.5 g / 22.7 N
|
| 2 mm |
|
4.63 kg / 10.20 lbs
4625.0 g / 45.4 N
|
| 3 mm |
|
6.94 kg / 15.29 lbs
6937.5 g / 68.1 N
|
| 5 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
| 10 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
| 11 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
| 12 mm |
|
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 35x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.25 kg / 20.39 lbs
9250.0 g / 90.7 N
|
OK |
| 40 °C | -2.2% |
9.05 kg / 19.94 lbs
9046.5 g / 88.7 N
|
OK |
| 60 °C | -4.4% |
8.84 kg / 19.50 lbs
8843.0 g / 86.7 N
|
|
| 80 °C | -6.6% |
8.64 kg / 19.05 lbs
8639.5 g / 84.8 N
|
|
| 100 °C | -28.8% |
6.59 kg / 14.52 lbs
6586.0 g / 64.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 35x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.20 kg / 37.92 lbs
3 075 Gs
|
2.58 kg / 5.69 lbs
2580 g / 25.3 N
|
N/A |
| 1 mm |
16.78 kg / 36.99 lbs
3 364 Gs
|
2.52 kg / 5.55 lbs
2517 g / 24.7 N
|
15.10 kg / 33.29 lbs
~0 Gs
|
| 2 mm |
16.29 kg / 35.91 lbs
3 314 Gs
|
2.44 kg / 5.39 lbs
2443 g / 24.0 N
|
14.66 kg / 32.32 lbs
~0 Gs
|
| 3 mm |
15.75 kg / 34.71 lbs
3 259 Gs
|
2.36 kg / 5.21 lbs
2362 g / 23.2 N
|
14.17 kg / 31.24 lbs
~0 Gs
|
| 5 mm |
14.54 kg / 32.05 lbs
3 131 Gs
|
2.18 kg / 4.81 lbs
2180 g / 21.4 N
|
13.08 kg / 28.84 lbs
~0 Gs
|
| 10 mm |
11.18 kg / 24.64 lbs
2 746 Gs
|
1.68 kg / 3.70 lbs
1677 g / 16.4 N
|
10.06 kg / 22.18 lbs
~0 Gs
|
| 20 mm |
5.45 kg / 12.02 lbs
1 918 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 50 mm |
0.45 kg / 1.00 lbs
552 Gs
|
0.07 kg / 0.15 lbs
68 g / 0.7 N
|
0.41 kg / 0.90 lbs
~0 Gs
|
| 60 mm |
0.21 kg / 0.47 lbs
380 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 70 mm |
0.11 kg / 0.24 lbs
269 Gs
|
0.02 kg / 0.04 lbs
16 g / 0.2 N
|
0.10 kg / 0.21 lbs
~0 Gs
|
| 80 mm |
0.06 kg / 0.13 lbs
197 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
147 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
112 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 35x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 35x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.08 km/h
(5.30 m/s)
|
0.51 J | |
| 30 mm |
28.19 km/h
(7.83 m/s)
|
1.11 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
1.82 J | |
| 100 mm |
51.07 km/h
(14.18 m/s)
|
3.63 J |
Tabela 9: Parametry powłoki (trwałość)
MW 35x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 35x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 291 Mx | 202.9 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 35x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.25 kg | Standard |
| Woda (dno rzeki) |
10.59 kg
(+1.34 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i gładki charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na skuteczność.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Opcja produkcji skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Kruchość to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z użyciem blachy ze miękkiej stali, która służy jako element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet mikroskopijna odległość (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka daje najlepsze rezultaty. Stale stopowe obniżają przenikalność magnetyczną i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Temperatura pracy – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig określano stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.
Urazy ciała
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa przyciągające się elementy.
Zagrożenie zapłonem
Proszek powstający podczas obróbki magnesów jest wybuchowy. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Uwaga medyczna
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może zakłócić pracę implantu.
Limity termiczne
Typowe magnesy neodymowe (typ N) tracą moc po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Uszkodzenia czujników
Uwaga: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Zakaz zabawy
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Niklowa powłoka a alergia
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są bardzo kruche. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
