MW 35x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010059
GTIN: 5906301810582
Średnica Ø
35 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
36.08 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.25 kg / 90.73 N
Indukcja magnetyczna
170.30 mT / 1703 Gs
Powłoka
[NiCuNi] nikiel
13.81 ZŁ z VAT / szt. + cena za transport
11.23 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie skontaktuj się za pomocą
formularz
na stronie kontaktowej.
Właściwości oraz kształt magnesów neodymowych obliczysz w naszym
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MW 35x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 35x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010059 |
| GTIN | 5906301810582 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 35 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 36.08 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.25 kg / 90.73 N |
| Indukcja magnetyczna ~ ? | 170.30 mT / 1703 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Poniższe dane są rezultat analizy fizycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
MW 35x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1703 Gs
170.3 mT
|
9.25 kg / 9250.0 g
90.7 N
|
mocny |
| 1 mm |
1657 Gs
165.7 mT
|
8.76 kg / 8759.4 g
85.9 N
|
mocny |
| 2 mm |
1599 Gs
159.9 mT
|
8.15 kg / 8152.2 g
80.0 N
|
mocny |
| 3 mm |
1530 Gs
153.0 mT
|
7.47 kg / 7468.5 g
73.3 N
|
mocny |
| 5 mm |
1373 Gs
137.3 mT
|
6.01 kg / 6011.5 g
59.0 N
|
mocny |
| 10 mm |
959 Gs
95.9 mT
|
2.93 kg / 2932.7 g
28.8 N
|
mocny |
| 15 mm |
631 Gs
63.1 mT
|
1.27 kg / 1270.4 g
12.5 N
|
niskie ryzyko |
| 20 mm |
413 Gs
41.3 mT
|
0.54 kg / 544.8 g
5.3 N
|
niskie ryzyko |
| 30 mm |
190 Gs
19.0 mT
|
0.12 kg / 115.2 g
1.1 N
|
niskie ryzyko |
| 50 mm |
56 Gs
5.6 mT
|
0.01 kg / 10.1 g
0.1 N
|
niskie ryzyko |
MW 35x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.85 kg / 1850.0 g
18.1 N
|
| 1 mm | Stal (~0.2) |
1.75 kg / 1752.0 g
17.2 N
|
| 2 mm | Stal (~0.2) |
1.63 kg / 1630.0 g
16.0 N
|
| 3 mm | Stal (~0.2) |
1.49 kg / 1494.0 g
14.7 N
|
| 5 mm | Stal (~0.2) |
1.20 kg / 1202.0 g
11.8 N
|
| 10 mm | Stal (~0.2) |
0.59 kg / 586.0 g
5.7 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 254.0 g
2.5 N
|
| 20 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
MW 35x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.78 kg / 2775.0 g
27.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.85 kg / 1850.0 g
18.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 925.0 g
9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.63 kg / 4625.0 g
45.4 N
|
MW 35x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 925.0 g
9.1 N
|
| 1 mm |
|
2.31 kg / 2312.5 g
22.7 N
|
| 2 mm |
|
4.63 kg / 4625.0 g
45.4 N
|
| 5 mm |
|
9.25 kg / 9250.0 g
90.7 N
|
| 10 mm |
|
9.25 kg / 9250.0 g
90.7 N
|
MW 35x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.25 kg / 9250.0 g
90.7 N
|
OK |
| 40 °C | -2.2% |
9.05 kg / 9046.5 g
88.7 N
|
OK |
| 60 °C | -4.4% |
8.84 kg / 8843.0 g
86.7 N
|
|
| 80 °C | -6.6% |
8.64 kg / 8639.5 g
84.8 N
|
|
| 100 °C | -28.8% |
6.59 kg / 6586.0 g
64.6 N
|
MW 35x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.20 kg / 17200 g
168.7 N
3 075 Gs
|
N/A |
| 1 mm |
16.78 kg / 16778 g
164.6 N
3 364 Gs
|
15.10 kg / 15100 g
148.1 N
~0 Gs
|
| 2 mm |
16.29 kg / 16288 g
159.8 N
3 314 Gs
|
14.66 kg / 14659 g
143.8 N
~0 Gs
|
| 3 mm |
15.75 kg / 15745 g
154.5 N
3 259 Gs
|
14.17 kg / 14171 g
139.0 N
~0 Gs
|
| 5 mm |
14.54 kg / 14536 g
142.6 N
3 131 Gs
|
13.08 kg / 13083 g
128.3 N
~0 Gs
|
| 10 mm |
11.18 kg / 11178 g
109.7 N
2 746 Gs
|
10.06 kg / 10060 g
98.7 N
~0 Gs
|
| 20 mm |
5.45 kg / 5453 g
53.5 N
1 918 Gs
|
4.91 kg / 4908 g
48.1 N
~0 Gs
|
| 50 mm |
0.45 kg / 452 g
4.4 N
552 Gs
|
0.41 kg / 407 g
4.0 N
~0 Gs
|
MW 35x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MW 35x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.08 km/h
(5.30 m/s)
|
0.51 J | |
| 30 mm |
28.19 km/h
(7.83 m/s)
|
1.11 J | |
| 50 mm |
36.13 km/h
(10.04 m/s)
|
1.82 J | |
| 100 mm |
51.07 km/h
(14.18 m/s)
|
3.63 J |
MW 35x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 35x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 20 291 Mx | 202.9 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
MW 35x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.25 kg | Standard |
| Woda (dno rzeki) |
10.59 kg
(+1.34 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla standardowych magnesów maksymalna temperatura to 80°C.
Inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają silne pole.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy osłony lub montaż w stali.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- z zastosowaniem blachy ze miękkiej stali, pełniącej rolę zwora magnetyczna
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza udźwig.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Silny magnes może zakłócić działanie implantu.
Zagrożenie dla najmłodszych
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Siła neodymu
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Bądź skupiony i respektuj ich siły.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Alergia na nikiel
Niektóre osoby wykazuje nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może skutkować silną reakcję alergiczną. Zalecamy używanie rękawic bezlateksowych.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Siła zgniatająca
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Uwaga na odpryski
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
