MW 33x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010057
GTIN/EAN: 5906301810568
Średnica Ø
33 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
64.15 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.67 kg / 232.15 N
Indukcja magnetyczna
321.26 mT / 3213 Gs
Powłoka
[NiCuNi] nikiel
26.52 ZŁ z VAT / szt. + cena za transport
21.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie napisz korzystając z
nasz formularz online
na naszej stronie.
Właściwości i budowę magnesów obliczysz w naszym
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MW 33x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 33x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010057 |
| GTIN/EAN | 5906301810568 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 33 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 64.15 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.67 kg / 232.15 N |
| Indukcja magnetyczna ~ ? | 321.26 mT / 3213 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Niniejsze dane są bezpośredni efekt symulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MW 33x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3212 Gs
321.2 mT
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
krytyczny poziom |
| 1 mm |
3064 Gs
306.4 mT
|
21.54 kg / 47.49 lbs
21539.1 g / 211.3 N
|
krytyczny poziom |
| 2 mm |
2901 Gs
290.1 mT
|
19.30 kg / 42.55 lbs
19302.3 g / 189.4 N
|
krytyczny poziom |
| 3 mm |
2728 Gs
272.8 mT
|
17.07 kg / 37.64 lbs
17072.3 g / 167.5 N
|
krytyczny poziom |
| 5 mm |
2373 Gs
237.3 mT
|
12.91 kg / 28.47 lbs
12913.7 g / 126.7 N
|
krytyczny poziom |
| 10 mm |
1569 Gs
156.9 mT
|
5.65 kg / 12.45 lbs
5648.1 g / 55.4 N
|
mocny |
| 15 mm |
1004 Gs
100.4 mT
|
2.31 kg / 5.10 lbs
2312.6 g / 22.7 N
|
mocny |
| 20 mm |
650 Gs
65.0 mT
|
0.97 kg / 2.14 lbs
969.4 g / 9.5 N
|
bezpieczny |
| 30 mm |
299 Gs
29.9 mT
|
0.21 kg / 0.45 lbs
205.1 g / 2.0 N
|
bezpieczny |
| 50 mm |
90 Gs
9.0 mT
|
0.02 kg / 0.04 lbs
18.7 g / 0.2 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 33x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.73 kg / 10.44 lbs
4734.0 g / 46.4 N
|
| 1 mm | Stal (~0.2) |
4.31 kg / 9.50 lbs
4308.0 g / 42.3 N
|
| 2 mm | Stal (~0.2) |
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
| 3 mm | Stal (~0.2) |
3.41 kg / 7.53 lbs
3414.0 g / 33.5 N
|
| 5 mm | Stal (~0.2) |
2.58 kg / 5.69 lbs
2582.0 g / 25.3 N
|
| 10 mm | Stal (~0.2) |
1.13 kg / 2.49 lbs
1130.0 g / 11.1 N
|
| 15 mm | Stal (~0.2) |
0.46 kg / 1.02 lbs
462.0 g / 4.5 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 0.43 lbs
194.0 g / 1.9 N
|
| 30 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 33x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.10 kg / 15.66 lbs
7101.0 g / 69.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.73 kg / 10.44 lbs
4734.0 g / 46.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.37 kg / 5.22 lbs
2367.0 g / 23.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.84 kg / 26.09 lbs
11835.0 g / 116.1 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 33x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.18 kg / 2.61 lbs
1183.5 g / 11.6 N
|
| 1 mm |
|
2.96 kg / 6.52 lbs
2958.8 g / 29.0 N
|
| 2 mm |
|
5.92 kg / 13.05 lbs
5917.5 g / 58.1 N
|
| 3 mm |
|
8.88 kg / 19.57 lbs
8876.3 g / 87.1 N
|
| 5 mm |
|
14.79 kg / 32.61 lbs
14793.8 g / 145.1 N
|
| 10 mm |
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
| 11 mm |
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
| 12 mm |
|
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 33x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.67 kg / 52.18 lbs
23670.0 g / 232.2 N
|
OK |
| 40 °C | -2.2% |
23.15 kg / 51.04 lbs
23149.3 g / 227.1 N
|
OK |
| 60 °C | -4.4% |
22.63 kg / 49.89 lbs
22628.5 g / 222.0 N
|
|
| 80 °C | -6.6% |
22.11 kg / 48.74 lbs
22107.8 g / 216.9 N
|
|
| 100 °C | -28.8% |
16.85 kg / 37.15 lbs
16853.0 g / 165.3 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 33x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
54.40 kg / 119.94 lbs
4 780 Gs
|
8.16 kg / 17.99 lbs
8160 g / 80.1 N
|
N/A |
| 1 mm |
52.02 kg / 114.68 lbs
6 282 Gs
|
7.80 kg / 17.20 lbs
7803 g / 76.5 N
|
46.82 kg / 103.21 lbs
~0 Gs
|
| 2 mm |
49.51 kg / 109.14 lbs
6 128 Gs
|
7.43 kg / 16.37 lbs
7426 g / 72.8 N
|
44.55 kg / 98.23 lbs
~0 Gs
|
| 3 mm |
46.95 kg / 103.50 lbs
5 968 Gs
|
7.04 kg / 15.52 lbs
7042 g / 69.1 N
|
42.25 kg / 93.15 lbs
~0 Gs
|
| 5 mm |
41.79 kg / 92.13 lbs
5 630 Gs
|
6.27 kg / 13.82 lbs
6268 g / 61.5 N
|
37.61 kg / 82.91 lbs
~0 Gs
|
| 10 mm |
29.68 kg / 65.43 lbs
4 745 Gs
|
4.45 kg / 9.82 lbs
4452 g / 43.7 N
|
26.71 kg / 58.89 lbs
~0 Gs
|
| 20 mm |
12.98 kg / 28.62 lbs
3 138 Gs
|
1.95 kg / 4.29 lbs
1947 g / 19.1 N
|
11.68 kg / 25.76 lbs
~0 Gs
|
| 50 mm |
0.99 kg / 2.18 lbs
867 Gs
|
0.15 kg / 0.33 lbs
149 g / 1.5 N
|
0.89 kg / 1.97 lbs
~0 Gs
|
| 60 mm |
0.47 kg / 1.04 lbs
598 Gs
|
0.07 kg / 0.16 lbs
71 g / 0.7 N
|
0.42 kg / 0.94 lbs
~0 Gs
|
| 70 mm |
0.24 kg / 0.53 lbs
426 Gs
|
0.04 kg / 0.08 lbs
36 g / 0.4 N
|
0.22 kg / 0.47 lbs
~0 Gs
|
| 80 mm |
0.13 kg / 0.28 lbs
312 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 90 mm |
0.07 kg / 0.16 lbs
235 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 100 mm |
0.04 kg / 0.09 lbs
181 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 33x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 33x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.07 km/h
(6.13 m/s)
|
1.21 J | |
| 30 mm |
33.74 km/h
(9.37 m/s)
|
2.82 J | |
| 50 mm |
43.34 km/h
(12.04 m/s)
|
4.65 J | |
| 100 mm |
61.26 km/h
(17.02 m/s)
|
9.29 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 33x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 33x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 29 509 Mx | 295.1 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 33x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.67 kg | Standard |
| Woda (dno rzeki) |
27.10 kg
(+3.43 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki powłoce (nikiel, złoto, Ag) zyskują nowoczesny, błyszczący wygląd.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- z wykorzystaniem płyty ze miękkiej stali, działającej jako zwora magnetyczna
- o przekroju nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- przy zerowej szczelinie (brak zanieczyszczeń)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co poprawia nasycenie pola. Nierówny metal zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża udźwig.
Ostrzeżenia
Zakaz obróbki
Pył generowany podczas cięcia magnesów jest łatwopalny. Unikaj wiercenia w magnesach w warunkach domowych.
Produkt nie dla dzieci
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Zagrożenie dla elektroniki
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Niebezpieczeństwo dla rozruszników
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Uszkodzenia ciała
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Bezpieczna praca
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Maksymalna temperatura
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
