Magnesy neodymowe – najsilniejsze na rynku

Szukasz ogromnej mocy w małym rozmiarze? Oferujemy bogatą gamę magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do zastosowań domowych, warsztatu oraz zadań przemysłowych. Sprawdź naszą ofertę dostępne od ręki.

sprawdź pełną ofertę

Uchwyty do eksploracji dna

Zacznij swoje hobby związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i potężnej siły. Nierdzewna konstrukcja oraz wzmocnione liny sprawdzą się w trudnych warunkach wodnych.

wybierz swój magnes do wody

Niezawodne uchwyty z gwintem

Profesjonalne rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy instalacji oświetlenia, czujników oraz banerów.

zobacz zastosowania przemysłowe

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 29x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010053

GTIN/EAN: 5906301810520

5.00

Średnica Ø

29 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

49.54 g

Kierunek magnesowania

↑ osiowy

Udźwig

20.82 kg / 204.22 N

Indukcja magnetyczna

351.88 mT / 3519 Gs

Powłoka

[NiCuNi] nikiel

17.34 z VAT / szt. + cena za transport

14.10 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
14.10 ZŁ
17.34 ZŁ
cena od 50 szt.
13.25 ZŁ
16.30 ZŁ
cena od 180 szt.
12.41 ZŁ
15.26 ZŁ
Masz problem z wyborem?

Dzwoń do nas +48 888 99 98 98 lub zostaw wiadomość poprzez nasz formularz online przez naszą stronę.
Masę a także formę magnesów zobaczysz dzięki naszemu kalkulatorze siły.

Zamów do 14:00, a wyślemy dziś!

Dane techniczne produktu - MW 29x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 29x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010053
GTIN/EAN 5906301810520
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 29 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 49.54 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 20.82 kg / 204.22 N
Indukcja magnetyczna ~ ? 351.88 mT / 3519 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 29x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja inżynierska magnesu - parametry techniczne

Przedstawione wartości są rezultat symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MW 29x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3518 Gs
351.8 mT
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
krytyczny poziom
1 mm 3321 Gs
332.1 mT
18.55 kg / 40.89 lbs
18548.8 g / 182.0 N
krytyczny poziom
2 mm 3106 Gs
310.6 mT
16.23 kg / 35.77 lbs
16226.1 g / 159.2 N
krytyczny poziom
3 mm 2883 Gs
288.3 mT
13.98 kg / 30.82 lbs
13978.2 g / 137.1 N
krytyczny poziom
5 mm 2437 Gs
243.7 mT
9.99 kg / 22.02 lbs
9987.1 g / 98.0 N
uwaga
10 mm 1500 Gs
150.0 mT
3.78 kg / 8.34 lbs
3783.1 g / 37.1 N
uwaga
15 mm 905 Gs
90.5 mT
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
bezpieczny
20 mm 563 Gs
56.3 mT
0.53 kg / 1.17 lbs
532.4 g / 5.2 N
bezpieczny
30 mm 247 Gs
24.7 mT
0.10 kg / 0.23 lbs
102.4 g / 1.0 N
bezpieczny
50 mm 72 Gs
7.2 mT
0.01 kg / 0.02 lbs
8.7 g / 0.1 N
bezpieczny

Tabela 2: Równoległa siła ześlizgu (pion)
MW 29x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 4.16 kg / 9.18 lbs
4164.0 g / 40.8 N
1 mm Stal (~0.2) 3.71 kg / 8.18 lbs
3710.0 g / 36.4 N
2 mm Stal (~0.2) 3.25 kg / 7.16 lbs
3246.0 g / 31.8 N
3 mm Stal (~0.2) 2.80 kg / 6.16 lbs
2796.0 g / 27.4 N
5 mm Stal (~0.2) 2.00 kg / 4.40 lbs
1998.0 g / 19.6 N
10 mm Stal (~0.2) 0.76 kg / 1.67 lbs
756.0 g / 7.4 N
15 mm Stal (~0.2) 0.28 kg / 0.61 lbs
276.0 g / 2.7 N
20 mm Stal (~0.2) 0.11 kg / 0.23 lbs
106.0 g / 1.0 N
30 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 29x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
6.25 kg / 13.77 lbs
6246.0 g / 61.3 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
4.16 kg / 9.18 lbs
4164.0 g / 40.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
2.08 kg / 4.59 lbs
2082.0 g / 20.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
10.41 kg / 22.95 lbs
10410.0 g / 102.1 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 29x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.04 kg / 2.30 lbs
1041.0 g / 10.2 N
1 mm
13%
2.60 kg / 5.74 lbs
2602.5 g / 25.5 N
2 mm
25%
5.21 kg / 11.48 lbs
5205.0 g / 51.1 N
3 mm
38%
7.81 kg / 17.21 lbs
7807.5 g / 76.6 N
5 mm
63%
13.01 kg / 28.69 lbs
13012.5 g / 127.7 N
10 mm
100%
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
11 mm
100%
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
12 mm
100%
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N

Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 29x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
OK
40 °C -2.2% 20.36 kg / 44.89 lbs
20362.0 g / 199.8 N
OK
60 °C -4.4% 19.90 kg / 43.88 lbs
19903.9 g / 195.3 N
80 °C -6.6% 19.45 kg / 42.87 lbs
19445.9 g / 190.8 N
100 °C -28.8% 14.82 kg / 32.68 lbs
14823.8 g / 145.4 N

Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 29x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 50.40 kg / 111.11 lbs
5 016 Gs
7.56 kg / 16.67 lbs
7560 g / 74.2 N
N/A
1 mm 47.70 kg / 105.17 lbs
6 845 Gs
7.16 kg / 15.78 lbs
7156 g / 70.2 N
42.93 kg / 94.65 lbs
~0 Gs
2 mm 44.90 kg / 98.99 lbs
6 641 Gs
6.74 kg / 14.85 lbs
6735 g / 66.1 N
40.41 kg / 89.09 lbs
~0 Gs
3 mm 42.08 kg / 92.77 lbs
6 429 Gs
6.31 kg / 13.92 lbs
6312 g / 61.9 N
37.87 kg / 83.50 lbs
~0 Gs
5 mm 36.52 kg / 80.52 lbs
5 990 Gs
5.48 kg / 12.08 lbs
5478 g / 53.7 N
32.87 kg / 72.47 lbs
~0 Gs
10 mm 24.18 kg / 53.30 lbs
4 873 Gs
3.63 kg / 7.99 lbs
3626 g / 35.6 N
21.76 kg / 47.97 lbs
~0 Gs
20 mm 9.16 kg / 20.19 lbs
2 999 Gs
1.37 kg / 3.03 lbs
1374 g / 13.5 N
8.24 kg / 18.17 lbs
~0 Gs
50 mm 0.54 kg / 1.19 lbs
729 Gs
0.08 kg / 0.18 lbs
81 g / 0.8 N
0.49 kg / 1.07 lbs
~0 Gs
60 mm 0.25 kg / 0.55 lbs
493 Gs
0.04 kg / 0.08 lbs
37 g / 0.4 N
0.22 kg / 0.49 lbs
~0 Gs
70 mm 0.12 kg / 0.27 lbs
347 Gs
0.02 kg / 0.04 lbs
18 g / 0.2 N
0.11 kg / 0.24 lbs
~0 Gs
80 mm 0.06 kg / 0.14 lbs
252 Gs
0.01 kg / 0.02 lbs
10 g / 0.1 N
0.06 kg / 0.13 lbs
~0 Gs
90 mm 0.04 kg / 0.08 lbs
188 Gs
0.01 kg / 0.01 lbs
5 g / 0.1 N
0.03 kg / 0.07 lbs
~0 Gs
100 mm 0.02 kg / 0.05 lbs
144 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.04 lbs
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MW 29x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 13.5 cm
Implant słuchowy 10 Gs (1.0 mT) 10.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 8.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 6.5 cm
Pilot do auta 50 Gs (5.0 mT) 6.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.0 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 29x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 22.90 km/h
(6.36 m/s)
1.00 J
30 mm 35.92 km/h
(9.98 m/s)
2.47 J
50 mm 46.24 km/h
(12.85 m/s)
4.09 J
100 mm 65.38 km/h
(18.16 m/s)
8.17 J

Tabela 9: Odporność na korozję
MW 29x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 29x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 24 471 Mx 244.7 µWb
Współczynnik Pc 0.45 Niski (Płaski)

Tabela 11: Zastosowanie podwodne
MW 29x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 20.82 kg Standard
Woda (dno rzeki) 23.84 kg
(+3.02 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Montaż na ścianie (ześlizg)

*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ułamek siły prostopadłej.

2. Wpływ grubości blachy

*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.

3. Stabilność termiczna

*W klasie N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.45

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010053-2025
Kalkulator miar
Siła (udźwig)

Indukcja magnetyczna

Inne oferty

Prezentowany produkt to ekstremalnie mocny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø29x10 mm gwarantuje najwyższą gęstość energii. Komponent MW 29x10 / N38 cechuje się tolerancją ±0,1mm oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 20.82 kg), produkt ten jest dostępny od ręki z naszego polskiego centrum logistycznego, co zapewnia szybką realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy prądnic, zaawansowanych czujników oraz wydajnych filtrów, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 204.22 N przy wadze zaledwie 49.54 g, ten walec jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na delikatną strukturę spieku ceramicznego, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego profesjonalnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do 90% zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz jeszcze mocniejszych magnesów w tej samej objętości (Ø29x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø29x10 mm, co przy wadze 49.54 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 204.22 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 49.54 g. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 29 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety magnesów neodymowych Nd2Fe14B.

Plusy

Oprócz niezwykłą wydajnością magnetyczną, te produkty posiadają dodatkowe korzyści::
  • Są niezwykle trwałe – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (wg danych).
  • Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
  • Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i gładki charakter.
  • Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
  • Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Duża swoboda w projektowaniu kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.

Wady

Warto znać też słabe strony magnesów neodymowych:
  • Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
  • Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
  • Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.

Analiza siły trzymania

Najwyższa nośność magnesuod czego zależy?

Parametr siły jest rezultatem pomiaru zrealizowanego w specyficznych, idealnych warunkach:
  • na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
  • której grubość wynosi ok. 10 mm
  • charakteryzującej się gładkością
  • przy zerowej szczelinie (brak farby)
  • dla siły działającej pod kątem prostym (w osi magnesu)
  • w temperaturze pokojowej

Wpływ czynników na nośność magnesu w praktyce

Na realną siłę mają wpływ parametry środowiska pracy, głównie (od najważniejszych):
  • Odstęp (między magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
  • Wektor obciążenia – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
  • Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą przyciągać słabiej.
  • Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
  • Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet drobny odstęp między magnesem, a blachą obniża udźwig.

Ostrzeżenia
Zakaz zabawy

Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.

Przegrzanie magnesu

Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.

Ostrzeżenie dla alergików

Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się bezpośredniego dotyku lub zakup magnesy powlekane tworzywem.

Uszkodzenia czujników

Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.

Uwaga na odpryski

Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.

Zagrożenie dla elektroniki

Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, czasomierze).

Siła zgniatająca

Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.

Interferencja medyczna

Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.

Moc przyciągania

Zachowaj rozwagę. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.

Nie wierć w magnesach

Pył powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach w warunkach domowych.

Uwaga! Szukasz szczegółów? Sprawdź nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98