MW 25x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010050
GTIN/EAN: 5906301810490
Średnica Ø
25 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
22.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.27 kg / 100.71 N
Indukcja magnetyczna
268.21 mT / 2682 Gs
Powłoka
[NiCuNi] nikiel
7.40 ZŁ z VAT / szt. + cena za transport
6.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie napisz przez
formularz zgłoszeniowy
na stronie kontakt.
Moc a także budowę magnesu neodymowego zobaczysz u nas w
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Karta produktu - MW 25x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010050 |
| GTIN/EAN | 5906301810490 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 22.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.27 kg / 100.71 N |
| Indukcja magnetyczna ~ ? | 268.21 mT / 2682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - raport
Poniższe informacje są bezpośredni efekt symulacji fizycznej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 25x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2682 Gs
268.2 mT
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
miażdżący |
| 1 mm |
2535 Gs
253.5 mT
|
9.18 kg / 20.23 lbs
9177.2 g / 90.0 N
|
średnie ryzyko |
| 2 mm |
2363 Gs
236.3 mT
|
7.97 kg / 17.57 lbs
7971.8 g / 78.2 N
|
średnie ryzyko |
| 3 mm |
2176 Gs
217.6 mT
|
6.76 kg / 14.91 lbs
6761.0 g / 66.3 N
|
średnie ryzyko |
| 5 mm |
1793 Gs
179.3 mT
|
4.59 kg / 10.13 lbs
4592.7 g / 45.1 N
|
średnie ryzyko |
| 10 mm |
1013 Gs
101.3 mT
|
1.46 kg / 3.23 lbs
1464.5 g / 14.4 N
|
słaby uchwyt |
| 15 mm |
565 Gs
56.5 mT
|
0.46 kg / 1.00 lbs
455.3 g / 4.5 N
|
słaby uchwyt |
| 20 mm |
330 Gs
33.0 mT
|
0.16 kg / 0.34 lbs
155.7 g / 1.5 N
|
słaby uchwyt |
| 30 mm |
134 Gs
13.4 mT
|
0.03 kg / 0.06 lbs
25.6 g / 0.3 N
|
słaby uchwyt |
| 50 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 25x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.05 kg / 4.53 lbs
2054.0 g / 20.1 N
|
| 1 mm | Stal (~0.2) |
1.84 kg / 4.05 lbs
1836.0 g / 18.0 N
|
| 2 mm | Stal (~0.2) |
1.59 kg / 3.51 lbs
1594.0 g / 15.6 N
|
| 3 mm | Stal (~0.2) |
1.35 kg / 2.98 lbs
1352.0 g / 13.3 N
|
| 5 mm | Stal (~0.2) |
0.92 kg / 2.02 lbs
918.0 g / 9.0 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
292.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 25x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.08 kg / 6.79 lbs
3081.0 g / 30.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.05 kg / 4.53 lbs
2054.0 g / 20.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.03 kg / 2.26 lbs
1027.0 g / 10.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.14 kg / 11.32 lbs
5135.0 g / 50.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 25x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.13 lbs
513.5 g / 5.0 N
|
| 1 mm |
|
1.28 kg / 2.83 lbs
1283.8 g / 12.6 N
|
| 2 mm |
|
2.57 kg / 5.66 lbs
2567.5 g / 25.2 N
|
| 3 mm |
|
3.85 kg / 8.49 lbs
3851.3 g / 37.8 N
|
| 5 mm |
|
6.42 kg / 14.15 lbs
6418.7 g / 63.0 N
|
| 10 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
| 11 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
| 12 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 25x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
OK |
| 40 °C | -2.2% |
10.04 kg / 22.14 lbs
10044.1 g / 98.5 N
|
OK |
| 60 °C | -4.4% |
9.82 kg / 21.65 lbs
9818.1 g / 96.3 N
|
|
| 80 °C | -6.6% |
9.59 kg / 21.15 lbs
9592.2 g / 94.1 N
|
|
| 100 °C | -28.8% |
7.31 kg / 16.12 lbs
7312.2 g / 71.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 25x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.76 kg / 47.98 lbs
4 291 Gs
|
3.26 kg / 7.20 lbs
3264 g / 32.0 N
|
N/A |
| 1 mm |
20.66 kg / 45.54 lbs
5 225 Gs
|
3.10 kg / 6.83 lbs
3098 g / 30.4 N
|
18.59 kg / 40.98 lbs
~0 Gs
|
| 2 mm |
19.45 kg / 42.87 lbs
5 070 Gs
|
2.92 kg / 6.43 lbs
2917 g / 28.6 N
|
17.50 kg / 38.58 lbs
~0 Gs
|
| 3 mm |
18.18 kg / 40.09 lbs
4 902 Gs
|
2.73 kg / 6.01 lbs
2727 g / 26.8 N
|
16.36 kg / 36.08 lbs
~0 Gs
|
| 5 mm |
15.60 kg / 34.39 lbs
4 541 Gs
|
2.34 kg / 5.16 lbs
2340 g / 23.0 N
|
14.04 kg / 30.95 lbs
~0 Gs
|
| 10 mm |
9.73 kg / 21.46 lbs
3 587 Gs
|
1.46 kg / 3.22 lbs
1460 g / 14.3 N
|
8.76 kg / 19.31 lbs
~0 Gs
|
| 20 mm |
3.10 kg / 6.84 lbs
2 025 Gs
|
0.47 kg / 1.03 lbs
465 g / 4.6 N
|
2.79 kg / 6.16 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.28 lbs
409 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.11 kg / 0.25 lbs
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 lbs
268 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
183 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
131 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
72 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 25x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MW 25x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.60 km/h
(6.56 m/s)
|
0.47 J | |
| 30 mm |
37.72 km/h
(10.48 m/s)
|
1.21 J | |
| 50 mm |
48.63 km/h
(13.51 m/s)
|
2.02 J | |
| 100 mm |
68.77 km/h
(19.10 m/s)
|
4.03 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 25x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 25x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 740 Mx | 147.4 µWb |
| Współczynnik Pc | 0.34 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 25x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.27 kg | Standard |
| Woda (dno rzeki) |
11.76 kg
(+1.49 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.34
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat gubią nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- której grubość wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Dystans – obecność ciała obcego (farba, taśma, powietrze) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża udźwig.
BHP przy magnesach
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i użyć środków ochronnych.
Zasady obsługi
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Magnesy są kruche
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Ochrona urządzeń
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Smartfony i tablety
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Samozapłon
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
