MW 25x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010050
GTIN/EAN: 5906301810490
Średnica Ø
25 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
22.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.27 kg / 100.71 N
Indukcja magnetyczna
268.21 mT / 2682 Gs
Powłoka
[NiCuNi] nikiel
7.40 ZŁ z VAT / szt. + cena za transport
6.02 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie napisz za pomocą
nasz formularz online
w sekcji kontakt.
Parametry oraz formę elementów magnetycznych wyliczysz u nas w
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MW 25x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010050 |
| GTIN/EAN | 5906301810490 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 22.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.27 kg / 100.71 N |
| Indukcja magnetyczna ~ ? | 268.21 mT / 2682 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Niniejsze informacje stanowią wynik symulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - charakterystyka
MW 25x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2682 Gs
268.2 mT
|
10.27 kg / 10270.0 g
100.7 N
|
miażdżący |
| 1 mm |
2535 Gs
253.5 mT
|
9.18 kg / 9177.2 g
90.0 N
|
średnie ryzyko |
| 2 mm |
2363 Gs
236.3 mT
|
7.97 kg / 7971.8 g
78.2 N
|
średnie ryzyko |
| 3 mm |
2176 Gs
217.6 mT
|
6.76 kg / 6761.0 g
66.3 N
|
średnie ryzyko |
| 5 mm |
1793 Gs
179.3 mT
|
4.59 kg / 4592.7 g
45.1 N
|
średnie ryzyko |
| 10 mm |
1013 Gs
101.3 mT
|
1.46 kg / 1464.5 g
14.4 N
|
niskie ryzyko |
| 15 mm |
565 Gs
56.5 mT
|
0.46 kg / 455.3 g
4.5 N
|
niskie ryzyko |
| 20 mm |
330 Gs
33.0 mT
|
0.16 kg / 155.7 g
1.5 N
|
niskie ryzyko |
| 30 mm |
134 Gs
13.4 mT
|
0.03 kg / 25.6 g
0.3 N
|
niskie ryzyko |
| 50 mm |
36 Gs
3.6 mT
|
0.00 kg / 1.9 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 25x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.05 kg / 2054.0 g
20.1 N
|
| 1 mm | Stal (~0.2) |
1.84 kg / 1836.0 g
18.0 N
|
| 2 mm | Stal (~0.2) |
1.59 kg / 1594.0 g
15.6 N
|
| 3 mm | Stal (~0.2) |
1.35 kg / 1352.0 g
13.3 N
|
| 5 mm | Stal (~0.2) |
0.92 kg / 918.0 g
9.0 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 292.0 g
2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 92.0 g
0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 25x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.08 kg / 3081.0 g
30.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.05 kg / 2054.0 g
20.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.03 kg / 1027.0 g
10.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.14 kg / 5135.0 g
50.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 25x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 513.5 g
5.0 N
|
| 1 mm |
|
1.28 kg / 1283.8 g
12.6 N
|
| 2 mm |
|
2.57 kg / 2567.5 g
25.2 N
|
| 5 mm |
|
6.42 kg / 6418.7 g
63.0 N
|
| 10 mm |
|
10.27 kg / 10270.0 g
100.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MW 25x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.27 kg / 10270.0 g
100.7 N
|
OK |
| 40 °C | -2.2% |
10.04 kg / 10044.1 g
98.5 N
|
OK |
| 60 °C | -4.4% |
9.82 kg / 9818.1 g
96.3 N
|
|
| 80 °C | -6.6% |
9.59 kg / 9592.2 g
94.1 N
|
|
| 100 °C | -28.8% |
7.31 kg / 7312.2 g
71.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 25x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
21.76 kg / 21762 g
213.5 N
4 291 Gs
|
N/A |
| 1 mm |
20.66 kg / 20656 g
202.6 N
5 225 Gs
|
18.59 kg / 18590 g
182.4 N
~0 Gs
|
| 2 mm |
19.45 kg / 19446 g
190.8 N
5 070 Gs
|
17.50 kg / 17502 g
171.7 N
~0 Gs
|
| 3 mm |
18.18 kg / 18182 g
178.4 N
4 902 Gs
|
16.36 kg / 16364 g
160.5 N
~0 Gs
|
| 5 mm |
15.60 kg / 15599 g
153.0 N
4 541 Gs
|
14.04 kg / 14040 g
137.7 N
~0 Gs
|
| 10 mm |
9.73 kg / 9732 g
95.5 N
3 587 Gs
|
8.76 kg / 8759 g
85.9 N
~0 Gs
|
| 20 mm |
3.10 kg / 3103 g
30.4 N
2 025 Gs
|
2.79 kg / 2793 g
27.4 N
~0 Gs
|
| 50 mm |
0.13 kg / 127 g
1.2 N
409 Gs
|
0.11 kg / 114 g
1.1 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MW 25x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 25x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
23.60 km/h
(6.56 m/s)
|
0.47 J | |
| 30 mm |
37.72 km/h
(10.48 m/s)
|
1.21 J | |
| 50 mm |
48.63 km/h
(13.51 m/s)
|
2.02 J | |
| 100 mm |
68.77 km/h
(19.10 m/s)
|
4.03 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 25x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 25x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 740 Mx | 147.4 µWb |
| Współczynnik Pc | 0.34 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 25x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.27 kg | Standard |
| Woda (dno rzeki) |
11.76 kg
(+1.49 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.34
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem silników, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Minusy
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Charakterystyka udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z użyciem blachy ze stali o wysokiej przenikalności, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig określano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Ryzyko połknięcia
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wiąże się z koniecznością natychmiastowej operacji.
Elektronika precyzyjna
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od telefonu, tabletu i nawigacji.
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Uczulenie na powłokę
Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Ryzyko pęknięcia
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Utrata mocy w cieple
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Uszkodzenia ciała
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Zagrożenie wybuchem pyłu
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Implanty kardiologiczne
Pacjenci z rozrusznikiem serca muszą zachować bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie implantu.
Ostrożność wymagana
Stosuj magnesy świadomie. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i respektuj ich siły.
