MW 10x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010005
GTIN/EAN: 5906301810049
Średnica Ø
10 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.60 kg / 25.51 N
Indukcja magnetyczna
587.44 mT / 5874 Gs
Powłoka
[NiCuNi] nikiel
6.15 ZŁ z VAT / szt. + cena za transport
5.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub daj znać przez
formularz
na stronie kontaktowej.
Moc i formę magnesu przetestujesz w naszym
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MW 10x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010005 |
| GTIN/EAN | 5906301810049 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.60 kg / 25.51 N |
| Indukcja magnetyczna ~ ? | 587.44 mT / 5874 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione informacje są bezpośredni efekt symulacji inżynierskiej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 10x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5870 Gs
587.0 mT
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
średnie ryzyko |
| 1 mm |
4702 Gs
470.2 mT
|
1.67 kg / 3.68 lbs
1668.3 g / 16.4 N
|
słaby uchwyt |
| 2 mm |
3645 Gs
364.5 mT
|
1.00 kg / 2.21 lbs
1002.8 g / 9.8 N
|
słaby uchwyt |
| 3 mm |
2784 Gs
278.4 mT
|
0.58 kg / 1.29 lbs
584.8 g / 5.7 N
|
słaby uchwyt |
| 5 mm |
1631 Gs
163.1 mT
|
0.20 kg / 0.44 lbs
200.7 g / 2.0 N
|
słaby uchwyt |
| 10 mm |
534 Gs
53.4 mT
|
0.02 kg / 0.05 lbs
21.5 g / 0.2 N
|
słaby uchwyt |
| 15 mm |
234 Gs
23.4 mT
|
0.00 kg / 0.01 lbs
4.1 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
123 Gs
12.3 mT
|
0.00 kg / 0.00 lbs
1.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 10x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| 1 mm | Stal (~0.2) |
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
| 2 mm | Stal (~0.2) |
0.20 kg / 0.44 lbs
200.0 g / 2.0 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 0.26 lbs
116.0 g / 1.1 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
40.0 g / 0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.78 kg / 1.72 lbs
780.0 g / 7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 1.15 lbs
520.0 g / 5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 10x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 1 mm |
|
0.65 kg / 1.43 lbs
650.0 g / 6.4 N
|
| 2 mm |
|
1.30 kg / 2.87 lbs
1300.0 g / 12.8 N
|
| 3 mm |
|
1.95 kg / 4.30 lbs
1950.0 g / 19.1 N
|
| 5 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 10 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 11 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
| 12 mm |
|
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 10x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.60 kg / 5.73 lbs
2600.0 g / 25.5 N
|
OK |
| 40 °C | -2.2% |
2.54 kg / 5.61 lbs
2542.8 g / 24.9 N
|
OK |
| 60 °C | -4.4% |
2.49 kg / 5.48 lbs
2485.6 g / 24.4 N
|
OK |
| 80 °C | -6.6% |
2.43 kg / 5.35 lbs
2428.4 g / 23.8 N
|
|
| 100 °C | -28.8% |
1.85 kg / 4.08 lbs
1851.2 g / 18.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 10x15 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.68 kg / 36.78 lbs
6 103 Gs
|
2.50 kg / 5.52 lbs
2502 g / 24.5 N
|
N/A |
| 1 mm |
13.52 kg / 29.80 lbs
10 567 Gs
|
2.03 kg / 4.47 lbs
2028 g / 19.9 N
|
12.17 kg / 26.82 lbs
~0 Gs
|
| 2 mm |
10.70 kg / 23.60 lbs
9 404 Gs
|
1.61 kg / 3.54 lbs
1606 g / 15.8 N
|
9.63 kg / 21.24 lbs
~0 Gs
|
| 3 mm |
8.35 kg / 18.40 lbs
8 304 Gs
|
1.25 kg / 2.76 lbs
1252 g / 12.3 N
|
7.51 kg / 16.56 lbs
~0 Gs
|
| 5 mm |
4.92 kg / 10.85 lbs
6 377 Gs
|
0.74 kg / 1.63 lbs
738 g / 7.2 N
|
4.43 kg / 9.77 lbs
~0 Gs
|
| 10 mm |
1.29 kg / 2.84 lbs
3 262 Gs
|
0.19 kg / 0.43 lbs
193 g / 1.9 N
|
1.16 kg / 2.56 lbs
~0 Gs
|
| 20 mm |
0.14 kg / 0.30 lbs
1 068 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
145 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
93 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
63 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
45 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
25 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MW 10x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 10x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
0.10 J | |
| 30 mm |
29.96 km/h
(8.32 m/s)
|
0.31 J | |
| 50 mm |
38.67 km/h
(10.74 m/s)
|
0.51 J | |
| 100 mm |
54.69 km/h
(15.19 m/s)
|
1.02 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 10x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 950 Mx | 49.5 µWb |
| Współczynnik Pc | 1.09 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 10x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.60 kg | Standard |
| Woda (dno rzeki) |
2.98 kg
(+0.38 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.09
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki powłoce (nikiel, złoto, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- z płaszczyzną wolną od rys
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie wybuchem pyłu
Pył generowany podczas szlifowania magnesów jest łatwopalny. Zakaz wiercenia w magnesach w warunkach domowych.
Uwaga: zadławienie
Te produkty magnetyczne nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Uszkodzenia czujników
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować sensory w Twoim telefonie.
Nie zbliżaj do komputera
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uwaga medyczna
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ryzyko pęknięcia
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
Uczulenie na powłokę
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Siła zgniatająca
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
