MW 10x15 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010005
GTIN/EAN: 5906301810049
Średnica Ø
10 mm [±0,1 mm]
Wysokość
15 mm [±0,1 mm]
Waga
8.84 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.60 kg / 25.51 N
Indukcja magnetyczna
587.44 mT / 5874 Gs
Powłoka
[NiCuNi] nikiel
6.15 ZŁ z VAT / szt. + cena za transport
5.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub skontaktuj się przez
formularz zgłoszeniowy
na stronie kontaktowej.
Udźwig i wygląd magnesów neodymowych zweryfikujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 10x15 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x15 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010005 |
| GTIN/EAN | 5906301810049 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 15 mm [±0,1 mm] |
| Waga | 8.84 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.60 kg / 25.51 N |
| Indukcja magnetyczna ~ ? | 587.44 mT / 5874 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie techniczna magnesu - raport
Niniejsze dane są rezultat symulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MW 10x15 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5870 Gs
587.0 mT
|
2.60 kg / 2600.0 g
25.5 N
|
uwaga |
| 1 mm |
4702 Gs
470.2 mT
|
1.67 kg / 1668.3 g
16.4 N
|
bezpieczny |
| 2 mm |
3645 Gs
364.5 mT
|
1.00 kg / 1002.8 g
9.8 N
|
bezpieczny |
| 3 mm |
2784 Gs
278.4 mT
|
0.58 kg / 584.8 g
5.7 N
|
bezpieczny |
| 5 mm |
1631 Gs
163.1 mT
|
0.20 kg / 200.7 g
2.0 N
|
bezpieczny |
| 10 mm |
534 Gs
53.4 mT
|
0.02 kg / 21.5 g
0.2 N
|
bezpieczny |
| 15 mm |
234 Gs
23.4 mT
|
0.00 kg / 4.1 g
0.0 N
|
bezpieczny |
| 20 mm |
123 Gs
12.3 mT
|
0.00 kg / 1.1 g
0.0 N
|
bezpieczny |
| 30 mm |
46 Gs
4.6 mT
|
0.00 kg / 0.2 g
0.0 N
|
bezpieczny |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 10x15 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 520.0 g
5.1 N
|
| 1 mm | Stal (~0.2) |
0.33 kg / 334.0 g
3.3 N
|
| 2 mm | Stal (~0.2) |
0.20 kg / 200.0 g
2.0 N
|
| 3 mm | Stal (~0.2) |
0.12 kg / 116.0 g
1.1 N
|
| 5 mm | Stal (~0.2) |
0.04 kg / 40.0 g
0.4 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x15 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.78 kg / 780.0 g
7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 520.0 g
5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 260.0 g
2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.30 kg / 1300.0 g
12.8 N
|
MW 10x15 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 260.0 g
2.6 N
|
| 1 mm |
|
0.65 kg / 650.0 g
6.4 N
|
| 2 mm |
|
1.30 kg / 1300.0 g
12.8 N
|
| 5 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
| 10 mm |
|
2.60 kg / 2600.0 g
25.5 N
|
MW 10x15 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.60 kg / 2600.0 g
25.5 N
|
OK |
| 40 °C | -2.2% |
2.54 kg / 2542.8 g
24.9 N
|
OK |
| 60 °C | -4.4% |
2.49 kg / 2485.6 g
24.4 N
|
OK |
| 80 °C | -6.6% |
2.43 kg / 2428.4 g
23.8 N
|
|
| 100 °C | -28.8% |
1.85 kg / 1851.2 g
18.2 N
|
MW 10x15 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
16.68 kg / 16683 g
163.7 N
6 103 Gs
|
N/A |
| 1 mm |
13.52 kg / 13517 g
132.6 N
10 567 Gs
|
12.17 kg / 12166 g
119.3 N
~0 Gs
|
| 2 mm |
10.70 kg / 10704 g
105.0 N
9 404 Gs
|
9.63 kg / 9634 g
94.5 N
~0 Gs
|
| 3 mm |
8.35 kg / 8347 g
81.9 N
8 304 Gs
|
7.51 kg / 7512 g
73.7 N
~0 Gs
|
| 5 mm |
4.92 kg / 4923 g
48.3 N
6 377 Gs
|
4.43 kg / 4431 g
43.5 N
~0 Gs
|
| 10 mm |
1.29 kg / 1288 g
12.6 N
3 262 Gs
|
1.16 kg / 1159 g
11.4 N
~0 Gs
|
| 20 mm |
0.14 kg / 138 g
1.4 N
1 068 Gs
|
0.12 kg / 124 g
1.2 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
145 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x15 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 10x15 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.39 km/h
(4.83 m/s)
|
0.10 J | |
| 30 mm |
29.96 km/h
(8.32 m/s)
|
0.31 J | |
| 50 mm |
38.67 km/h
(10.74 m/s)
|
0.51 J | |
| 100 mm |
54.69 km/h
(15.19 m/s)
|
1.02 J |
MW 10x15 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x15 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 4 950 Mx | 49.5 µWb |
| Współczynnik Pc | 1.09 | Wysoki (Stabilny) |
MW 10x15 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.60 kg | Standard |
| Woda (dno rzeki) |
2.98 kg
(+0.38 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.09
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Opcja produkcji złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- przy kontakcie z blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną oczyszczoną i gładką
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Odstęp (między magnesem a blachą), ponieważ nawet niewielka przerwa (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą generować mniejszy udźwig.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet minimalna przerwa między magnesem, a blachą zmniejsza udźwig.
Uczulenie na powłokę
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Moc przyciągania
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
Tylko dla dorosłych
Te produkty magnetyczne nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Niebezpieczeństwo dla rozruszników
Pacjenci z stymulatorem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić działanie implantu.
Uszkodzenia ciała
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Kompas i GPS
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Podatność na pękanie
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
