MW 25x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010049
GTIN/EAN: 5906301810483
Średnica Ø
25 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
18.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.98 kg / 78.25 N
Indukcja magnetyczna
230.20 mT / 2302 Gs
Powłoka
[NiCuNi] nikiel
8.39 ZŁ z VAT / szt. + cena za transport
6.82 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo napisz za pomocą
nasz formularz online
przez naszą stronę.
Właściwości oraz budowę magnesów obliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane produktu - MW 25x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 25x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010049 |
| GTIN/EAN | 5906301810483 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 25 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 18.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.98 kg / 78.25 N |
| Indukcja magnetyczna ~ ? | 230.20 mT / 2302 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze wartości stanowią wynik analizy fizycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 25x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
7.98 kg / 7980.0 g
78.3 N
|
mocny |
| 1 mm |
2189 Gs
218.9 mT
|
7.21 kg / 7214.9 g
70.8 N
|
mocny |
| 2 mm |
2050 Gs
205.0 mT
|
6.33 kg / 6329.3 g
62.1 N
|
mocny |
| 3 mm |
1895 Gs
189.5 mT
|
5.41 kg / 5410.7 g
53.1 N
|
mocny |
| 5 mm |
1570 Gs
157.0 mT
|
3.72 kg / 3715.4 g
36.4 N
|
mocny |
| 10 mm |
890 Gs
89.0 mT
|
1.19 kg / 1192.8 g
11.7 N
|
bezpieczny |
| 15 mm |
495 Gs
49.5 mT
|
0.37 kg / 368.5 g
3.6 N
|
bezpieczny |
| 20 mm |
288 Gs
28.8 mT
|
0.12 kg / 124.8 g
1.2 N
|
bezpieczny |
| 30 mm |
116 Gs
11.6 mT
|
0.02 kg / 20.2 g
0.2 N
|
bezpieczny |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 1.4 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 25x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.60 kg / 1596.0 g
15.7 N
|
| 1 mm | Stal (~0.2) |
1.44 kg / 1442.0 g
14.1 N
|
| 2 mm | Stal (~0.2) |
1.27 kg / 1266.0 g
12.4 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 1082.0 g
10.6 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 744.0 g
7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 238.0 g
2.3 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 25x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.39 kg / 2394.0 g
23.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.60 kg / 1596.0 g
15.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.80 kg / 798.0 g
7.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.99 kg / 3990.0 g
39.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 25x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.80 kg / 798.0 g
7.8 N
|
| 1 mm |
|
2.00 kg / 1995.0 g
19.6 N
|
| 2 mm |
|
3.99 kg / 3990.0 g
39.1 N
|
| 5 mm |
|
7.98 kg / 7980.0 g
78.3 N
|
| 10 mm |
|
7.98 kg / 7980.0 g
78.3 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 25x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.98 kg / 7980.0 g
78.3 N
|
OK |
| 40 °C | -2.2% |
7.80 kg / 7804.4 g
76.6 N
|
OK |
| 60 °C | -4.4% |
7.63 kg / 7628.9 g
74.8 N
|
|
| 80 °C | -6.6% |
7.45 kg / 7453.3 g
73.1 N
|
|
| 100 °C | -28.8% |
5.68 kg / 5681.8 g
55.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 25x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
16.03 kg / 16032 g
157.3 N
3 871 Gs
|
N/A |
| 1 mm |
15.31 kg / 15309 g
150.2 N
4 498 Gs
|
13.78 kg / 13778 g
135.2 N
~0 Gs
|
| 2 mm |
14.49 kg / 14494 g
142.2 N
4 377 Gs
|
13.05 kg / 13045 g
128.0 N
~0 Gs
|
| 3 mm |
13.62 kg / 13623 g
133.6 N
4 243 Gs
|
12.26 kg / 12261 g
120.3 N
~0 Gs
|
| 5 mm |
11.79 kg / 11792 g
115.7 N
3 948 Gs
|
10.61 kg / 10613 g
104.1 N
~0 Gs
|
| 10 mm |
7.46 kg / 7464 g
73.2 N
3 141 Gs
|
6.72 kg / 6718 g
65.9 N
~0 Gs
|
| 20 mm |
2.40 kg / 2396 g
23.5 N
1 780 Gs
|
2.16 kg / 2157 g
21.2 N
~0 Gs
|
| 50 mm |
0.10 kg / 95 g
0.9 N
355 Gs
|
0.09 kg / 86 g
0.8 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 25x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 25x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.87 km/h
(6.35 m/s)
|
0.37 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.94 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.57 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.13 J |
Tabela 9: Parametry powłoki (trwałość)
MW 25x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 25x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 13 107 Mx | 131.1 µWb |
| Współczynnik Pc | 0.29 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 25x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.98 kg | Standard |
| Woda (dno rzeki) |
9.14 kg
(+1.16 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.29
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają silne pole.
Słabe strony
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub uchwyty.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Maksymalna moc trzymania magnesu – od czego zależy?
- z wykorzystaniem płyty ze miękkiej stali, pełniącej rolę element zamykający obwód
- której wymiar poprzeczny sięga przynajmniej 10 mm
- z powierzchnią wolną od rys
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie ciała obcego (rdza, taśma, szczelina) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Uwaga: zadławienie
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Unikaj kontaktu w przypadku alergii
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Limity termiczne
Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Niszczenie danych
Nie przykładaj magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Siła zgniatająca
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Ostrożność wymagana
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Uwaga medyczna
Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
