MW 22x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010047
GTIN/EAN: 5906301810469
Średnica Ø
22 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
17.11 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.33 kg / 91.51 N
Indukcja magnetyczna
296.78 mT / 2968 Gs
Powłoka
[NiCuNi] nikiel
6.11 ZŁ z VAT / szt. + cena za transport
4.97 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo pisz poprzez
formularz zgłoszeniowy
przez naszą stronę.
Moc oraz kształt magnesów neodymowych obliczysz w naszym
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja produktu - MW 22x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010047 |
| GTIN/EAN | 5906301810469 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 17.11 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.33 kg / 91.51 N |
| Indukcja magnetyczna ~ ? | 296.78 mT / 2968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - parametry techniczne
Poniższe informacje są wynik kalkulacji inżynierskiej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MW 22x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2967 Gs
296.7 mT
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
mocny |
| 1 mm |
2767 Gs
276.7 mT
|
8.12 kg / 17.89 lbs
8116.0 g / 79.6 N
|
mocny |
| 2 mm |
2538 Gs
253.8 mT
|
6.82 kg / 15.05 lbs
6824.4 g / 66.9 N
|
mocny |
| 3 mm |
2295 Gs
229.5 mT
|
5.58 kg / 12.30 lbs
5580.8 g / 54.7 N
|
mocny |
| 5 mm |
1818 Gs
181.8 mT
|
3.50 kg / 7.73 lbs
3504.7 g / 34.4 N
|
mocny |
| 10 mm |
938 Gs
93.8 mT
|
0.93 kg / 2.06 lbs
933.4 g / 9.2 N
|
niskie ryzyko |
| 15 mm |
492 Gs
49.2 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
niskie ryzyko |
| 20 mm |
277 Gs
27.7 mT
|
0.08 kg / 0.18 lbs
81.6 g / 0.8 N
|
niskie ryzyko |
| 30 mm |
108 Gs
10.8 mT
|
0.01 kg / 0.03 lbs
12.4 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 22x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.58 lbs
1624.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.36 kg / 3.01 lbs
1364.0 g / 13.4 N
|
| 3 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1116.0 g / 10.9 N
|
| 5 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
186.0 g / 1.8 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 22x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.80 kg / 6.17 lbs
2799.0 g / 27.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 22x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| 1 mm |
|
2.33 kg / 5.14 lbs
2332.5 g / 22.9 N
|
| 2 mm |
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
| 3 mm |
|
7.00 kg / 15.43 lbs
6997.5 g / 68.6 N
|
| 5 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 10 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 11 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 12 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 22x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
OK |
| 40 °C | -2.2% |
9.12 kg / 20.12 lbs
9124.7 g / 89.5 N
|
OK |
| 60 °C | -4.4% |
8.92 kg / 19.66 lbs
8919.5 g / 87.5 N
|
|
| 80 °C | -6.6% |
8.71 kg / 19.21 lbs
8714.2 g / 85.5 N
|
|
| 100 °C | -28.8% |
6.64 kg / 14.65 lbs
6643.0 g / 65.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 22x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.63 kg / 45.48 lbs
4 566 Gs
|
3.09 kg / 6.82 lbs
3095 g / 30.4 N
|
N/A |
| 1 mm |
19.34 kg / 42.63 lbs
5 745 Gs
|
2.90 kg / 6.40 lbs
2901 g / 28.5 N
|
17.40 kg / 38.37 lbs
~0 Gs
|
| 2 mm |
17.95 kg / 39.57 lbs
5 535 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
16.15 kg / 35.61 lbs
~0 Gs
|
| 3 mm |
16.52 kg / 36.42 lbs
5 310 Gs
|
2.48 kg / 5.46 lbs
2478 g / 24.3 N
|
14.87 kg / 32.78 lbs
~0 Gs
|
| 5 mm |
13.69 kg / 30.18 lbs
4 834 Gs
|
2.05 kg / 4.53 lbs
2053 g / 20.1 N
|
12.32 kg / 27.16 lbs
~0 Gs
|
| 10 mm |
7.75 kg / 17.09 lbs
3 637 Gs
|
1.16 kg / 2.56 lbs
1162 g / 11.4 N
|
6.97 kg / 15.38 lbs
~0 Gs
|
| 20 mm |
2.06 kg / 4.55 lbs
1 877 Gs
|
0.31 kg / 0.68 lbs
310 g / 3.0 N
|
1.86 kg / 4.10 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
336 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
147 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
57 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 22x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 22x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.98 km/h
(6.94 m/s)
|
0.41 J | |
| 30 mm |
40.82 km/h
(11.34 m/s)
|
1.10 J | |
| 50 mm |
52.66 km/h
(14.63 m/s)
|
1.83 J | |
| 100 mm |
74.47 km/h
(20.69 m/s)
|
3.66 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 22x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 22x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 337 Mx | 123.4 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 22x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.33 kg | Standard |
| Woda (dno rzeki) |
10.68 kg
(+1.35 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Charakteryzują się wyjątkową odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans (pomiędzy magnesem a blachą), ponieważ nawet niewielka przerwa (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Bezpieczna praca z magnesami neodymowymi
Niebezpieczeństwo przytrzaśnięcia
Bloki magnetyczne mogą zdruzgotać palce błyskawicznie. Absolutnie nie umieszczaj dłoni pomiędzy dwa silne magnesy.
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Nie zbliżaj do komputera
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Zasady obsługi
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Przegrzanie magnesu
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Smartfony i tablety
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Samozapłon
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Reakcje alergiczne
Powszechnie wiadomo, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
