MW 22x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010047
GTIN/EAN: 5906301810469
Średnica Ø
22 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
17.11 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.33 kg / 91.51 N
Indukcja magnetyczna
296.78 mT / 2968 Gs
Powłoka
[NiCuNi] nikiel
6.11 ZŁ z VAT / szt. + cena za transport
4.97 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie skontaktuj się poprzez
nasz formularz online
na stronie kontakt.
Moc i budowę magnesów zweryfikujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna - MW 22x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010047 |
| GTIN/EAN | 5906301810469 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 17.11 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.33 kg / 91.51 N |
| Indukcja magnetyczna ~ ? | 296.78 mT / 2968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze wartości są bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 22x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2967 Gs
296.7 mT
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
średnie ryzyko |
| 1 mm |
2767 Gs
276.7 mT
|
8.12 kg / 17.89 lbs
8116.0 g / 79.6 N
|
średnie ryzyko |
| 2 mm |
2538 Gs
253.8 mT
|
6.82 kg / 15.05 lbs
6824.4 g / 66.9 N
|
średnie ryzyko |
| 3 mm |
2295 Gs
229.5 mT
|
5.58 kg / 12.30 lbs
5580.8 g / 54.7 N
|
średnie ryzyko |
| 5 mm |
1818 Gs
181.8 mT
|
3.50 kg / 7.73 lbs
3504.7 g / 34.4 N
|
średnie ryzyko |
| 10 mm |
938 Gs
93.8 mT
|
0.93 kg / 2.06 lbs
933.4 g / 9.2 N
|
niskie ryzyko |
| 15 mm |
492 Gs
49.2 mT
|
0.26 kg / 0.57 lbs
257.0 g / 2.5 N
|
niskie ryzyko |
| 20 mm |
277 Gs
27.7 mT
|
0.08 kg / 0.18 lbs
81.6 g / 0.8 N
|
niskie ryzyko |
| 30 mm |
108 Gs
10.8 mT
|
0.01 kg / 0.03 lbs
12.4 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 22x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 3.58 lbs
1624.0 g / 15.9 N
|
| 2 mm | Stal (~0.2) |
1.36 kg / 3.01 lbs
1364.0 g / 13.4 N
|
| 3 mm | Stal (~0.2) |
1.12 kg / 2.46 lbs
1116.0 g / 10.9 N
|
| 5 mm | Stal (~0.2) |
0.70 kg / 1.54 lbs
700.0 g / 6.9 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 0.41 lbs
186.0 g / 1.8 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
52.0 g / 0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 22x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.80 kg / 6.17 lbs
2799.0 g / 27.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.87 kg / 4.11 lbs
1866.0 g / 18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 22x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.06 lbs
933.0 g / 9.2 N
|
| 1 mm |
|
2.33 kg / 5.14 lbs
2332.5 g / 22.9 N
|
| 2 mm |
|
4.67 kg / 10.28 lbs
4665.0 g / 45.8 N
|
| 3 mm |
|
7.00 kg / 15.43 lbs
6997.5 g / 68.6 N
|
| 5 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 10 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 11 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
| 12 mm |
|
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 22x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.33 kg / 20.57 lbs
9330.0 g / 91.5 N
|
OK |
| 40 °C | -2.2% |
9.12 kg / 20.12 lbs
9124.7 g / 89.5 N
|
OK |
| 60 °C | -4.4% |
8.92 kg / 19.66 lbs
8919.5 g / 87.5 N
|
|
| 80 °C | -6.6% |
8.71 kg / 19.21 lbs
8714.2 g / 85.5 N
|
|
| 100 °C | -28.8% |
6.64 kg / 14.65 lbs
6643.0 g / 65.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 22x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.63 kg / 45.48 lbs
4 566 Gs
|
3.09 kg / 6.82 lbs
3095 g / 30.4 N
|
N/A |
| 1 mm |
19.34 kg / 42.63 lbs
5 745 Gs
|
2.90 kg / 6.40 lbs
2901 g / 28.5 N
|
17.40 kg / 38.37 lbs
~0 Gs
|
| 2 mm |
17.95 kg / 39.57 lbs
5 535 Gs
|
2.69 kg / 5.93 lbs
2692 g / 26.4 N
|
16.15 kg / 35.61 lbs
~0 Gs
|
| 3 mm |
16.52 kg / 36.42 lbs
5 310 Gs
|
2.48 kg / 5.46 lbs
2478 g / 24.3 N
|
14.87 kg / 32.78 lbs
~0 Gs
|
| 5 mm |
13.69 kg / 30.18 lbs
4 834 Gs
|
2.05 kg / 4.53 lbs
2053 g / 20.1 N
|
12.32 kg / 27.16 lbs
~0 Gs
|
| 10 mm |
7.75 kg / 17.09 lbs
3 637 Gs
|
1.16 kg / 2.56 lbs
1162 g / 11.4 N
|
6.97 kg / 15.38 lbs
~0 Gs
|
| 20 mm |
2.06 kg / 4.55 lbs
1 877 Gs
|
0.31 kg / 0.68 lbs
310 g / 3.0 N
|
1.86 kg / 4.10 lbs
~0 Gs
|
| 50 mm |
0.07 kg / 0.15 lbs
336 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
217 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
147 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
76 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
57 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 22x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 22x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.98 km/h
(6.94 m/s)
|
0.41 J | |
| 30 mm |
40.82 km/h
(11.34 m/s)
|
1.10 J | |
| 50 mm |
52.66 km/h
(14.63 m/s)
|
1.83 J | |
| 100 mm |
74.47 km/h
(20.69 m/s)
|
3.66 J |
Tabela 9: Parametry powłoki (trwałość)
MW 22x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MW 22x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 337 Mx | 123.4 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 22x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.33 kg | Standard |
| Woda (dno rzeki) |
10.68 kg
(+1.35 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Wyróżniają się niezwykłą odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy jest kluczowa.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- przy użyciu blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze ok. 20 stopni Celsjusza
Czynniki determinujące udźwig w warunkach realnych
- Dystans – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe osłabiają efekt przyciągania.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko złamań
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
Karty i dyski
Bardzo silne oddziaływanie może skasować dane na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Nie przegrzewaj magnesów
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zakaz zabawy
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Siła neodymu
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Ryzyko pożaru
Pył generowany podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Zagrożenie życia
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Kruchy spiek
Ryzyko skaleczenia. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Noś okulary.
