MW 22x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010047
GTIN/EAN: 5906301810469
Średnica Ø
22 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
17.11 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.33 kg / 91.51 N
Indukcja magnetyczna
296.78 mT / 2968 Gs
Powłoka
[NiCuNi] nikiel
6.11 ZŁ z VAT / szt. + cena za transport
4.97 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie daj znać przez
formularz
na stronie kontaktowej.
Parametry oraz budowę magnesu obliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MW 22x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010047 |
| GTIN/EAN | 5906301810469 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 17.11 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.33 kg / 91.51 N |
| Indukcja magnetyczna ~ ? | 296.78 mT / 2968 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią wynik symulacji fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 22x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2967 Gs
296.7 mT
|
9.33 kg / 9330.0 g
91.5 N
|
uwaga |
| 1 mm |
2767 Gs
276.7 mT
|
8.12 kg / 8116.0 g
79.6 N
|
uwaga |
| 2 mm |
2538 Gs
253.8 mT
|
6.82 kg / 6824.4 g
66.9 N
|
uwaga |
| 3 mm |
2295 Gs
229.5 mT
|
5.58 kg / 5580.8 g
54.7 N
|
uwaga |
| 5 mm |
1818 Gs
181.8 mT
|
3.50 kg / 3504.7 g
34.4 N
|
uwaga |
| 10 mm |
938 Gs
93.8 mT
|
0.93 kg / 933.4 g
9.2 N
|
bezpieczny |
| 15 mm |
492 Gs
49.2 mT
|
0.26 kg / 257.0 g
2.5 N
|
bezpieczny |
| 20 mm |
277 Gs
27.7 mT
|
0.08 kg / 81.6 g
0.8 N
|
bezpieczny |
| 30 mm |
108 Gs
10.8 mT
|
0.01 kg / 12.4 g
0.1 N
|
bezpieczny |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.9 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 22x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.87 kg / 1866.0 g
18.3 N
|
| 1 mm | Stal (~0.2) |
1.62 kg / 1624.0 g
15.9 N
|
| 2 mm | Stal (~0.2) |
1.36 kg / 1364.0 g
13.4 N
|
| 3 mm | Stal (~0.2) |
1.12 kg / 1116.0 g
10.9 N
|
| 5 mm | Stal (~0.2) |
0.70 kg / 700.0 g
6.9 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 186.0 g
1.8 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 52.0 g
0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 22x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.80 kg / 2799.0 g
27.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.87 kg / 1866.0 g
18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 933.0 g
9.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.67 kg / 4665.0 g
45.8 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 22x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 933.0 g
9.2 N
|
| 1 mm |
|
2.33 kg / 2332.5 g
22.9 N
|
| 2 mm |
|
4.67 kg / 4665.0 g
45.8 N
|
| 5 mm |
|
9.33 kg / 9330.0 g
91.5 N
|
| 10 mm |
|
9.33 kg / 9330.0 g
91.5 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 22x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.33 kg / 9330.0 g
91.5 N
|
OK |
| 40 °C | -2.2% |
9.12 kg / 9124.7 g
89.5 N
|
OK |
| 60 °C | -4.4% |
8.92 kg / 8919.5 g
87.5 N
|
|
| 80 °C | -6.6% |
8.71 kg / 8714.2 g
85.5 N
|
|
| 100 °C | -28.8% |
6.64 kg / 6643.0 g
65.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 22x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
20.63 kg / 20631 g
202.4 N
4 566 Gs
|
N/A |
| 1 mm |
19.34 kg / 19338 g
189.7 N
5 745 Gs
|
17.40 kg / 17404 g
170.7 N
~0 Gs
|
| 2 mm |
17.95 kg / 17947 g
176.1 N
5 535 Gs
|
16.15 kg / 16152 g
158.5 N
~0 Gs
|
| 3 mm |
16.52 kg / 16519 g
162.1 N
5 310 Gs
|
14.87 kg / 14867 g
145.8 N
~0 Gs
|
| 5 mm |
13.69 kg / 13690 g
134.3 N
4 834 Gs
|
12.32 kg / 12321 g
120.9 N
~0 Gs
|
| 10 mm |
7.75 kg / 7750 g
76.0 N
3 637 Gs
|
6.97 kg / 6975 g
68.4 N
~0 Gs
|
| 20 mm |
2.06 kg / 2064 g
20.2 N
1 877 Gs
|
1.86 kg / 1858 g
18.2 N
~0 Gs
|
| 50 mm |
0.07 kg / 66 g
0.6 N
336 Gs
|
0.06 kg / 60 g
0.6 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 22x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 22x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.98 km/h
(6.94 m/s)
|
0.41 J | |
| 30 mm |
40.82 km/h
(11.34 m/s)
|
1.10 J | |
| 50 mm |
52.66 km/h
(14.63 m/s)
|
1.83 J | |
| 100 mm |
74.47 km/h
(20.69 m/s)
|
3.66 J |
Tabela 9: Odporność na korozję
MW 22x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 22x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 337 Mx | 123.4 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 22x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.33 kg | Standard |
| Woda (dno rzeki) |
10.68 kg
(+1.35 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do konkretnego projektu.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalny udźwig magnesu – co ma na to wpływ?
- z użyciem płyty ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- której grubość wynosi ok. 10 mm
- z powierzchnią oczyszczoną i gładką
- w warunkach idealnego przylegania (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans – obecność jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe redukują przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Interferencja magnetyczna
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Ochrona urządzeń
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Kruchy spiek
Spieki NdFeB to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na ostre odłamki.
Produkt nie dla dzieci
Magnesy neodymowe nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Rozruszniki serca
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zagrożenie fizyczne
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie wkładaj dłoni pomiędzy dwa silne magnesy.
Niklowa powłoka a alergia
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym zabezpieczane są magnesy neodymowe. Dłuższy kontakt może powodować zaczerwienienie skóry. Wskazane jest noszenie rękawiczek ochronnych.
Ostrożność wymagana
Używaj magnesy z rozwagą. Ich ogromna siła może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Limity termiczne
Standardowe magnesy neodymowe (typ N) tracą moc po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
