MW 22x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010046
GTIN/EAN: 5906301810452
Średnica Ø
22 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
28.51 g
Kierunek magnesowania
↑ osiowy
Udźwig
14.75 kg / 144.65 N
Indukcja magnetyczna
416.85 mT / 4168 Gs
Powłoka
[NiCuNi] nikiel
11.30 ZŁ z VAT / szt. + cena za transport
9.19 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub napisz korzystając z
formularz kontaktowy
w sekcji kontakt.
Siłę oraz budowę elementów magnetycznych testujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegóły techniczne - MW 22x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 22x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010046 |
| GTIN/EAN | 5906301810452 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 22 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 28.51 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 14.75 kg / 144.65 N |
| Indukcja magnetyczna ~ ? | 416.85 mT / 4168 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Przedstawione informacje stanowią rezultat kalkulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 22x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4167 Gs
416.7 mT
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
miażdżący |
| 1 mm |
3823 Gs
382.3 mT
|
12.41 kg / 27.36 lbs
12412.2 g / 121.8 N
|
miażdżący |
| 2 mm |
3461 Gs
346.1 mT
|
10.18 kg / 22.43 lbs
10175.8 g / 99.8 N
|
miażdżący |
| 3 mm |
3102 Gs
310.2 mT
|
8.17 kg / 18.01 lbs
8171.3 g / 80.2 N
|
mocny |
| 5 mm |
2434 Gs
243.4 mT
|
5.03 kg / 11.09 lbs
5032.6 g / 49.4 N
|
mocny |
| 10 mm |
1262 Gs
126.2 mT
|
1.35 kg / 2.98 lbs
1352.7 g / 13.3 N
|
niskie ryzyko |
| 15 mm |
675 Gs
67.5 mT
|
0.39 kg / 0.85 lbs
387.3 g / 3.8 N
|
niskie ryzyko |
| 20 mm |
388 Gs
38.8 mT
|
0.13 kg / 0.28 lbs
128.2 g / 1.3 N
|
niskie ryzyko |
| 30 mm |
157 Gs
15.7 mT
|
0.02 kg / 0.05 lbs
20.9 g / 0.2 N
|
niskie ryzyko |
| 50 mm |
43 Gs
4.3 mT
|
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 22x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
|
| 1 mm | Stal (~0.2) |
2.48 kg / 5.47 lbs
2482.0 g / 24.3 N
|
| 2 mm | Stal (~0.2) |
2.04 kg / 4.49 lbs
2036.0 g / 20.0 N
|
| 3 mm | Stal (~0.2) |
1.63 kg / 3.60 lbs
1634.0 g / 16.0 N
|
| 5 mm | Stal (~0.2) |
1.01 kg / 2.22 lbs
1006.0 g / 9.9 N
|
| 10 mm | Stal (~0.2) |
0.27 kg / 0.60 lbs
270.0 g / 2.6 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
78.0 g / 0.8 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 22x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
4.43 kg / 9.76 lbs
4425.0 g / 43.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
7.38 kg / 16.26 lbs
7375.0 g / 72.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 22x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.74 kg / 1.63 lbs
737.5 g / 7.2 N
|
| 1 mm |
|
1.84 kg / 4.06 lbs
1843.8 g / 18.1 N
|
| 2 mm |
|
3.69 kg / 8.13 lbs
3687.5 g / 36.2 N
|
| 3 mm |
|
5.53 kg / 12.19 lbs
5531.3 g / 54.3 N
|
| 5 mm |
|
9.22 kg / 20.32 lbs
9218.8 g / 90.4 N
|
| 10 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
| 11 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
| 12 mm |
|
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 22x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
|
OK |
| 40 °C | -2.2% |
14.43 kg / 31.80 lbs
14425.5 g / 141.5 N
|
OK |
| 60 °C | -4.4% |
14.10 kg / 31.09 lbs
14101.0 g / 138.3 N
|
|
| 80 °C | -6.6% |
13.78 kg / 30.37 lbs
13776.5 g / 135.1 N
|
|
| 100 °C | -28.8% |
10.50 kg / 23.15 lbs
10502.0 g / 103.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 22x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
40.70 kg / 89.72 lbs
5 428 Gs
|
6.10 kg / 13.46 lbs
6105 g / 59.9 N
|
N/A |
| 1 mm |
37.49 kg / 82.64 lbs
7 999 Gs
|
5.62 kg / 12.40 lbs
5623 g / 55.2 N
|
33.74 kg / 74.38 lbs
~0 Gs
|
| 2 mm |
34.25 kg / 75.50 lbs
7 645 Gs
|
5.14 kg / 11.33 lbs
5137 g / 50.4 N
|
30.82 kg / 67.95 lbs
~0 Gs
|
| 3 mm |
31.10 kg / 68.56 lbs
7 285 Gs
|
4.66 kg / 10.28 lbs
4664 g / 45.8 N
|
27.99 kg / 61.70 lbs
~0 Gs
|
| 5 mm |
25.22 kg / 55.60 lbs
6 561 Gs
|
3.78 kg / 8.34 lbs
3783 g / 37.1 N
|
22.70 kg / 50.04 lbs
~0 Gs
|
| 10 mm |
13.89 kg / 30.61 lbs
4 868 Gs
|
2.08 kg / 4.59 lbs
2083 g / 20.4 N
|
12.50 kg / 27.55 lbs
~0 Gs
|
| 20 mm |
3.73 kg / 8.23 lbs
2 524 Gs
|
0.56 kg / 1.23 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.30 lbs
480 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 60 mm |
0.06 kg / 0.13 lbs
314 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
216 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
154 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
114 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 22x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 22x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.22 km/h
(6.73 m/s)
|
0.65 J | |
| 30 mm |
39.77 km/h
(11.05 m/s)
|
1.74 J | |
| 50 mm |
51.30 km/h
(14.25 m/s)
|
2.89 J | |
| 100 mm |
72.54 km/h
(20.15 m/s)
|
5.79 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 22x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 22x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 16 172 Mx | 161.7 µWb |
| Współczynnik Pc | 0.55 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 22x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 14.75 kg | Standard |
| Woda (dno rzeki) |
16.89 kg
(+2.14 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z użyciem płyty ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
- o przekroju przynajmniej 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka płyta nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Niklowa powłoka a alergia
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Zakaz zabawy
Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Smartfony i tablety
Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Nie wierć w magnesach
Pył powstający podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.
Siła zgniatająca
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.
Ogromna siła
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.
Wrażliwość na ciepło
Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.
Rozruszniki serca
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Ochrona urządzeń
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
