Silne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Mamy w ofercie szeroki wybór magnesów o różnych kształtach i wymiarach. Są one idealne do użytku w domu, warsztatu oraz zadań przemysłowych. Sprawdź naszą ofertę dostępne od ręki.

poznaj katalog magnesów

Magnesy do eksploracji dna

Odkryj pasję związaną z eksploracją dna! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Profesjonalne uchwyty z gwintem

Niezawodne rozwiązania do montażu bezinwazyjnego. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy mocowaniu lamp, czujników oraz banerów.

zobacz parametry techniczne

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 22x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010046

GTIN/EAN: 5906301810452

Średnica Ø

22 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

28.51 g

Kierunek magnesowania

↑ osiowy

Udźwig

14.75 kg / 144.65 N

Indukcja magnetyczna

416.85 mT / 4168 Gs

Powłoka

[NiCuNi] nikiel

11.30 z VAT / szt. + cena za transport

9.19 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
9.19 ZŁ
11.30 ZŁ
cena od 100 szt.
8.64 ZŁ
10.63 ZŁ
cena od 300 szt.
8.09 ZŁ
9.95 ZŁ
Szukasz zniżki?

Zadzwoń już teraz +48 22 499 98 98 lub napisz korzystając z formularz kontaktowy w sekcji kontakt.
Siłę oraz budowę elementów magnetycznych testujesz dzięki naszemu modułowym kalkulatorze.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Szczegóły techniczne - MW 22x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 22x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010046
GTIN/EAN 5906301810452
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 22 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 28.51 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 14.75 kg / 144.65 N
Indukcja magnetyczna ~ ? 416.85 mT / 4168 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 22x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza techniczna magnesu - dane

Przedstawione informacje stanowią rezultat kalkulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MW 22x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 4167 Gs
416.7 mT
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
miażdżący
1 mm 3823 Gs
382.3 mT
12.41 kg / 27.36 lbs
12412.2 g / 121.8 N
miażdżący
2 mm 3461 Gs
346.1 mT
10.18 kg / 22.43 lbs
10175.8 g / 99.8 N
miażdżący
3 mm 3102 Gs
310.2 mT
8.17 kg / 18.01 lbs
8171.3 g / 80.2 N
mocny
5 mm 2434 Gs
243.4 mT
5.03 kg / 11.09 lbs
5032.6 g / 49.4 N
mocny
10 mm 1262 Gs
126.2 mT
1.35 kg / 2.98 lbs
1352.7 g / 13.3 N
niskie ryzyko
15 mm 675 Gs
67.5 mT
0.39 kg / 0.85 lbs
387.3 g / 3.8 N
niskie ryzyko
20 mm 388 Gs
38.8 mT
0.13 kg / 0.28 lbs
128.2 g / 1.3 N
niskie ryzyko
30 mm 157 Gs
15.7 mT
0.02 kg / 0.05 lbs
20.9 g / 0.2 N
niskie ryzyko
50 mm 43 Gs
4.3 mT
0.00 kg / 0.00 lbs
1.6 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła zsuwania (pion)
MW 22x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
1 mm Stal (~0.2) 2.48 kg / 5.47 lbs
2482.0 g / 24.3 N
2 mm Stal (~0.2) 2.04 kg / 4.49 lbs
2036.0 g / 20.0 N
3 mm Stal (~0.2) 1.63 kg / 3.60 lbs
1634.0 g / 16.0 N
5 mm Stal (~0.2) 1.01 kg / 2.22 lbs
1006.0 g / 9.9 N
10 mm Stal (~0.2) 0.27 kg / 0.60 lbs
270.0 g / 2.6 N
15 mm Stal (~0.2) 0.08 kg / 0.17 lbs
78.0 g / 0.8 N
20 mm Stal (~0.2) 0.03 kg / 0.06 lbs
26.0 g / 0.3 N
30 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 22x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
4.43 kg / 9.76 lbs
4425.0 g / 43.4 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
2.95 kg / 6.50 lbs
2950.0 g / 28.9 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
1.48 kg / 3.25 lbs
1475.0 g / 14.5 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
7.38 kg / 16.26 lbs
7375.0 g / 72.3 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 22x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
0.74 kg / 1.63 lbs
737.5 g / 7.2 N
1 mm
13%
1.84 kg / 4.06 lbs
1843.8 g / 18.1 N
2 mm
25%
3.69 kg / 8.13 lbs
3687.5 g / 36.2 N
3 mm
38%
5.53 kg / 12.19 lbs
5531.3 g / 54.3 N
5 mm
63%
9.22 kg / 20.32 lbs
9218.8 g / 90.4 N
10 mm
100%
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
11 mm
100%
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
12 mm
100%
14.75 kg / 32.52 lbs
14750.0 g / 144.7 N

Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 22x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 14.75 kg / 32.52 lbs
14750.0 g / 144.7 N
OK
40 °C -2.2% 14.43 kg / 31.80 lbs
14425.5 g / 141.5 N
OK
60 °C -4.4% 14.10 kg / 31.09 lbs
14101.0 g / 138.3 N
80 °C -6.6% 13.78 kg / 30.37 lbs
13776.5 g / 135.1 N
100 °C -28.8% 10.50 kg / 23.15 lbs
10502.0 g / 103.0 N

Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 22x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 40.70 kg / 89.72 lbs
5 428 Gs
6.10 kg / 13.46 lbs
6105 g / 59.9 N
N/A
1 mm 37.49 kg / 82.64 lbs
7 999 Gs
5.62 kg / 12.40 lbs
5623 g / 55.2 N
33.74 kg / 74.38 lbs
~0 Gs
2 mm 34.25 kg / 75.50 lbs
7 645 Gs
5.14 kg / 11.33 lbs
5137 g / 50.4 N
30.82 kg / 67.95 lbs
~0 Gs
3 mm 31.10 kg / 68.56 lbs
7 285 Gs
4.66 kg / 10.28 lbs
4664 g / 45.8 N
27.99 kg / 61.70 lbs
~0 Gs
5 mm 25.22 kg / 55.60 lbs
6 561 Gs
3.78 kg / 8.34 lbs
3783 g / 37.1 N
22.70 kg / 50.04 lbs
~0 Gs
10 mm 13.89 kg / 30.61 lbs
4 868 Gs
2.08 kg / 4.59 lbs
2083 g / 20.4 N
12.50 kg / 27.55 lbs
~0 Gs
20 mm 3.73 kg / 8.23 lbs
2 524 Gs
0.56 kg / 1.23 lbs
560 g / 5.5 N
3.36 kg / 7.41 lbs
~0 Gs
50 mm 0.13 kg / 0.30 lbs
480 Gs
0.02 kg / 0.04 lbs
20 g / 0.2 N
0.12 kg / 0.27 lbs
~0 Gs
60 mm 0.06 kg / 0.13 lbs
314 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.05 kg / 0.11 lbs
~0 Gs
70 mm 0.03 kg / 0.06 lbs
216 Gs
0.00 kg / 0.01 lbs
4 g / 0.0 N
0.02 kg / 0.05 lbs
~0 Gs
80 mm 0.01 kg / 0.03 lbs
154 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.03 lbs
~0 Gs
90 mm 0.01 kg / 0.02 lbs
114 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.01 lbs
86 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 22x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 11.0 cm
Implant słuchowy 10 Gs (1.0 mT) 9.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 7.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 5.5 cm
Immobilizer 50 Gs (5.0 mT) 5.0 cm
Karta płatnicza 400 Gs (40.0 mT) 2.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.0 cm

Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 22x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 24.22 km/h
(6.73 m/s)
0.65 J
30 mm 39.77 km/h
(11.05 m/s)
1.74 J
50 mm 51.30 km/h
(14.25 m/s)
2.89 J
100 mm 72.54 km/h
(20.15 m/s)
5.79 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 22x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 22x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 16 172 Mx 161.7 µWb
Współczynnik Pc 0.55 Niski (Płaski)

Tabela 11: Fizyka poszukiwań podwodnych
MW 22x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 14.75 kg Standard
Woda (dno rzeki) 16.89 kg
(+2.14 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Montaż na ścianie (ześlizg)

*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.

2. Grubość podłoża

*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.

3. Wytrzymałość temperaturowa

*Dla materiału N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.55

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010046-2025
Kalkulator miar
Siła (udźwig)

Pole magnetyczne

Inne produkty

Prezentowany produkt to ekstremalnie mocny magnes walcowy, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø22x10 mm gwarantuje optymalną moc. Model MW 22x10 / N38 cechuje się dokładnością ±0,1mm oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 14.75 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem znajduje zastosowanie w projektach DIY, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element mocujący lub wykonawczy. Dzięki dużej mocy 144.65 N przy wadze zaledwie 28.51 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 22,1 mm) przy użyciu dwuskładnikowych klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się żywice anaerobowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są wystarczająco silne do większości zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana ekstremalna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø22x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym magazynie.
Model ten charakteryzuje się wymiarami Ø22x10 mm, co przy wadze 28.51 g czyni go elementem o wysokiej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj udźwig wynoszący około 14.75 kg (siła ~144.65 N), co przy tak kompaktowych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Standardowo oś magnetyczna przebiega przez środek walca, sprawiając, że największa siła przyciągania występuje na podstawach o średnicy 22 mm. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Zalety i wady neodymowych magnesów Nd2Fe14B.

Plusy

Oprócz potężną mocą, magnesy typu NdFeB gwarantują wiele innych atutów::
  • Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
  • Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
  • Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
  • Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
  • Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
  • Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.

Minusy

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
  • Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
  • Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
  • Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.

Parametry udźwigu

Optymalny udźwig magnesu neodymowegoco się na to składa?

Deklarowana siła magnesu dotyczy maksymalnych osiągów, którą zmierzono w warunkach laboratoryjnych, a mianowicie:
  • z użyciem płyty ze stali niskowęglowej, pełniącej rolę idealny przewodnik strumienia
  • o przekroju przynajmniej 10 mm
  • o idealnie gładkiej powierzchni kontaktu
  • przy całkowitym braku odstępu (brak zanieczyszczeń)
  • podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
  • w temp. ok. 20°C

Praktyczny udźwig: czynniki wpływające

W praktyce, rzeczywisty udźwig jest determinowana przez kilku kluczowych aspektów, uszeregowanych od najważniejszych:
  • Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
  • Grubość stali – zbyt cienka płyta nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
  • Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i udźwig.
  • Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
  • Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.

Ostrzeżenia
Niklowa powłoka a alergia

Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.

Zakaz zabawy

Zawsze chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Łamliwość magnesów

Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.

Smartfony i tablety

Pamiętaj: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.

Nie wierć w magnesach

Pył powstający podczas cięcia magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.

Siła zgniatająca

Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa silne magnesy.

Ogromna siła

Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Myśl o krok do przodu.

Wrażliwość na ciepło

Kontroluj ciepło. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i udźwig.

Rozruszniki serca

Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.

Ochrona urządzeń

Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.

Ostrzeżenie! Dowiedz się więcej o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesem.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98