MW 20x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010044
GTIN/EAN: 5906301810438
Średnica Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.93 kg / 67.95 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
5.56 ZŁ z VAT / szt. + cena za transport
4.52 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
lub zostaw wiadomość korzystając z
formularz zgłoszeniowy
w sekcji kontakt.
Masę i kształt magnesów zweryfikujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Właściwości fizyczne MW 20x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010044 |
| GTIN/EAN | 5906301810438 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.93 kg / 67.95 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Przedstawione dane są rezultat analizy fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
6.93 kg / 6930.0 g
68.0 N
|
uwaga |
| 1 mm |
2573 Gs
257.3 mT
|
5.97 kg / 5975.0 g
58.6 N
|
uwaga |
| 2 mm |
2340 Gs
234.0 mT
|
4.94 kg / 4940.1 g
48.5 N
|
uwaga |
| 3 mm |
2092 Gs
209.2 mT
|
3.95 kg / 3948.3 g
38.7 N
|
uwaga |
| 5 mm |
1611 Gs
161.1 mT
|
2.34 kg / 2343.4 g
23.0 N
|
uwaga |
| 10 mm |
775 Gs
77.5 mT
|
0.54 kg / 541.6 g
5.3 N
|
niskie ryzyko |
| 15 mm |
387 Gs
38.7 mT
|
0.13 kg / 135.0 g
1.3 N
|
niskie ryzyko |
| 20 mm |
211 Gs
21.1 mT
|
0.04 kg / 40.2 g
0.4 N
|
niskie ryzyko |
| 30 mm |
80 Gs
8.0 mT
|
0.01 kg / 5.7 g
0.1 N
|
niskie ryzyko |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.39 kg / 1386.0 g
13.6 N
|
| 1 mm | Stal (~0.2) |
1.19 kg / 1194.0 g
11.7 N
|
| 2 mm | Stal (~0.2) |
0.99 kg / 988.0 g
9.7 N
|
| 3 mm | Stal (~0.2) |
0.79 kg / 790.0 g
7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 468.0 g
4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 26.0 g
0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.08 kg / 2079.0 g
20.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.39 kg / 1386.0 g
13.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.69 kg / 693.0 g
6.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.47 kg / 3465.0 g
34.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.69 kg / 693.0 g
6.8 N
|
| 1 mm |
|
1.73 kg / 1732.5 g
17.0 N
|
| 2 mm |
|
3.47 kg / 3465.0 g
34.0 N
|
| 5 mm |
|
6.93 kg / 6930.0 g
68.0 N
|
| 10 mm |
|
6.93 kg / 6930.0 g
68.0 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.93 kg / 6930.0 g
68.0 N
|
OK |
| 40 °C | -2.2% |
6.78 kg / 6777.5 g
66.5 N
|
OK |
| 60 °C | -4.4% |
6.63 kg / 6625.1 g
65.0 N
|
|
| 80 °C | -6.6% |
6.47 kg / 6472.6 g
63.5 N
|
|
| 100 °C | -28.8% |
4.93 kg / 4934.2 g
48.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
14.87 kg / 14871 g
145.9 N
4 380 Gs
|
N/A |
| 1 mm |
13.89 kg / 13893 g
136.3 N
5 357 Gs
|
12.50 kg / 12504 g
122.7 N
~0 Gs
|
| 2 mm |
12.82 kg / 12822 g
125.8 N
5 146 Gs
|
11.54 kg / 11540 g
113.2 N
~0 Gs
|
| 3 mm |
11.71 kg / 11713 g
114.9 N
4 918 Gs
|
10.54 kg / 10542 g
103.4 N
~0 Gs
|
| 5 mm |
9.51 kg / 9513 g
93.3 N
4 433 Gs
|
8.56 kg / 8562 g
84.0 N
~0 Gs
|
| 10 mm |
5.03 kg / 5029 g
49.3 N
3 223 Gs
|
4.53 kg / 4526 g
44.4 N
~0 Gs
|
| 20 mm |
1.16 kg / 1162 g
11.4 N
1 549 Gs
|
1.05 kg / 1046 g
10.3 N
~0 Gs
|
| 50 mm |
0.03 kg / 30 g
0.3 N
251 Gs
|
0.03 kg / 27 g
0.3 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MW 20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.63 km/h
(7.12 m/s)
|
0.30 J | |
| 30 mm |
42.39 km/h
(11.77 m/s)
|
0.82 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.36 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.72 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 675 Mx | 96.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.93 kg | Standard |
| Woda (dno rzeki) |
7.93 kg
(+1.00 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają estetyczny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Są niezbędne w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- z użyciem płyty ze miękkiej stali, która służy jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Dystans (pomiędzy magnesem a metalem), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje zmniejszenie siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe obniżają właściwości magnetyczne i udźwig.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 75%. Ponadto, nawet niewielka szczelina między magnesem, a blachą obniża siłę trzymania.
Ostrzeżenia
Moc przyciągania
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie dla najmłodszych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do poważnych obrażeń. Trzymaj poza zasięgiem dzieci i zwierząt.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zagrożenie dla elektroniki
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Niklowa powłoka a alergia
Część populacji ma nadwrażliwość na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Sugerujemy używanie rękawiczek ochronnych.
Wpływ na zdrowie
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Temperatura pracy
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
