MW 20x5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010044
GTIN/EAN: 5906301810438
Średnica Ø
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.78 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.93 kg / 67.95 N
Indukcja magnetyczna
277.16 mT / 2772 Gs
Powłoka
[NiCuNi] nikiel
5.56 ZŁ z VAT / szt. + cena za transport
4.52 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo daj znać korzystając z
formularz kontaktowy
na stronie kontaktowej.
Parametry oraz wygląd elementów magnetycznych obliczysz u nas w
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 20x5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010044 |
| GTIN/EAN | 5906301810438 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.78 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.93 kg / 67.95 N |
| Indukcja magnetyczna ~ ? | 277.16 mT / 2772 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - parametry techniczne
Poniższe dane stanowią wynik analizy inżynierskiej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MW 20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2771 Gs
277.1 mT
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
średnie ryzyko |
| 1 mm |
2573 Gs
257.3 mT
|
5.97 kg / 13.17 lbs
5975.0 g / 58.6 N
|
średnie ryzyko |
| 2 mm |
2340 Gs
234.0 mT
|
4.94 kg / 10.89 lbs
4940.1 g / 48.5 N
|
średnie ryzyko |
| 3 mm |
2092 Gs
209.2 mT
|
3.95 kg / 8.70 lbs
3948.3 g / 38.7 N
|
średnie ryzyko |
| 5 mm |
1611 Gs
161.1 mT
|
2.34 kg / 5.17 lbs
2343.4 g / 23.0 N
|
średnie ryzyko |
| 10 mm |
775 Gs
77.5 mT
|
0.54 kg / 1.19 lbs
541.6 g / 5.3 N
|
niskie ryzyko |
| 15 mm |
387 Gs
38.7 mT
|
0.13 kg / 0.30 lbs
135.0 g / 1.3 N
|
niskie ryzyko |
| 20 mm |
211 Gs
21.1 mT
|
0.04 kg / 0.09 lbs
40.2 g / 0.4 N
|
niskie ryzyko |
| 30 mm |
80 Gs
8.0 mT
|
0.01 kg / 0.01 lbs
5.7 g / 0.1 N
|
niskie ryzyko |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (ściana)
MW 20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
|
| 1 mm | Stal (~0.2) |
1.19 kg / 2.63 lbs
1194.0 g / 11.7 N
|
| 2 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 3 mm | Stal (~0.2) |
0.79 kg / 1.74 lbs
790.0 g / 7.7 N
|
| 5 mm | Stal (~0.2) |
0.47 kg / 1.03 lbs
468.0 g / 4.6 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
108.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.08 kg / 4.58 lbs
2079.0 g / 20.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.39 kg / 3.06 lbs
1386.0 g / 13.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MW 20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.69 kg / 1.53 lbs
693.0 g / 6.8 N
|
| 1 mm |
|
1.73 kg / 3.82 lbs
1732.5 g / 17.0 N
|
| 2 mm |
|
3.47 kg / 7.64 lbs
3465.0 g / 34.0 N
|
| 3 mm |
|
5.20 kg / 11.46 lbs
5197.5 g / 51.0 N
|
| 5 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 10 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 11 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
| 12 mm |
|
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MW 20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.93 kg / 15.28 lbs
6930.0 g / 68.0 N
|
OK |
| 40 °C | -2.2% |
6.78 kg / 14.94 lbs
6777.5 g / 66.5 N
|
OK |
| 60 °C | -4.4% |
6.63 kg / 14.61 lbs
6625.1 g / 65.0 N
|
|
| 80 °C | -6.6% |
6.47 kg / 14.27 lbs
6472.6 g / 63.5 N
|
|
| 100 °C | -28.8% |
4.93 kg / 10.88 lbs
4934.2 g / 48.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MW 20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.87 kg / 32.79 lbs
4 380 Gs
|
2.23 kg / 4.92 lbs
2231 g / 21.9 N
|
N/A |
| 1 mm |
13.89 kg / 30.63 lbs
5 357 Gs
|
2.08 kg / 4.59 lbs
2084 g / 20.4 N
|
12.50 kg / 27.57 lbs
~0 Gs
|
| 2 mm |
12.82 kg / 28.27 lbs
5 146 Gs
|
1.92 kg / 4.24 lbs
1923 g / 18.9 N
|
11.54 kg / 25.44 lbs
~0 Gs
|
| 3 mm |
11.71 kg / 25.82 lbs
4 918 Gs
|
1.76 kg / 3.87 lbs
1757 g / 17.2 N
|
10.54 kg / 23.24 lbs
~0 Gs
|
| 5 mm |
9.51 kg / 20.97 lbs
4 433 Gs
|
1.43 kg / 3.15 lbs
1427 g / 14.0 N
|
8.56 kg / 18.88 lbs
~0 Gs
|
| 10 mm |
5.03 kg / 11.09 lbs
3 223 Gs
|
0.75 kg / 1.66 lbs
754 g / 7.4 N
|
4.53 kg / 9.98 lbs
~0 Gs
|
| 20 mm |
1.16 kg / 2.56 lbs
1 549 Gs
|
0.17 kg / 0.38 lbs
174 g / 1.7 N
|
1.05 kg / 2.31 lbs
~0 Gs
|
| 50 mm |
0.03 kg / 0.07 lbs
251 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 lbs
159 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 lbs
107 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
75 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
25.63 km/h
(7.12 m/s)
|
0.30 J | |
| 30 mm |
42.39 km/h
(11.77 m/s)
|
0.82 J | |
| 50 mm |
54.70 km/h
(15.19 m/s)
|
1.36 J | |
| 100 mm |
77.35 km/h
(21.49 m/s)
|
2.72 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 675 Mx | 96.7 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.93 kg | Standard |
| Woda (dno rzeki) |
7.93 kg
(+1.00 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Praca w cieple
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
UMP 75x25 [M10x3] GW F200 GOLD DUAL Lina / N42 - uchwyty magnetyczne do poszukiwań
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Cechują się stabilnością – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, efektywnie zamykającej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość stali – zbyt cienka płyta nie przyjmuje całego pola, przez co część strumienia ucieka na drugą stronę.
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura zmniejsza pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje nośność.
Środki ostrożności podczas pracy z magnesami neodymowymi
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Niebezpieczeństwo dla rozruszników
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Rozprysk materiału
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Uwaga: zadławienie
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Karty i dyski
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Niklowa powłoka a alergia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Temperatura pracy
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
