Magnesy neodymowe: siła, której szukasz

Chcesz kupić naprawdę silne magnesy? Oferujemy kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Są one idealne do zastosowań domowych, warsztatu oraz zadań przemysłowych. Zobacz produkty z szybką wysyłką.

poznaj katalog magnesów

Sprzęt dla poszukiwaczy skarbów

Zacznij swoje hobby z wyławianiem skarbów! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

znajdź sprzęt do poszukiwań

Uchwyty magnetyczne montażowe

Niezawodne rozwiązania do mocowania bezinwazyjnego. Uchwyty z gwintem (M8, M10, M12) gwarantują błyskawiczną organizację pracy na magazynach. Są niezastąpione przy mocowaniu oświetlenia, sensorów oraz reklam.

zobacz zastosowania przemysłowe

📦 Szybka wysyłka: kup do 14:00, paczka wyjdzie dziś!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 20x2.5 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010042

GTIN/EAN: 5906301810414

5.00

Średnica Ø

20 mm [±0,1 mm]

Wysokość

2.5 mm [±0,1 mm]

Waga

5.89 g

Kierunek magnesowania

↑ osiowy

Udźwig

2.41 kg / 23.65 N

Indukcja magnetyczna

150.34 mT / 1503 Gs

Powłoka

[NiCuNi] nikiel

2.51 z VAT / szt. + cena za transport

2.04 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
2.04 ZŁ
2.51 ZŁ
cena od 300 szt.
1.918 ZŁ
2.36 ZŁ
cena od 1250 szt.
1.795 ZŁ
2.21 ZŁ
Masz kłopot z wyborem?

Zadzwoń i zapytaj +48 22 499 98 98 lub zostaw wiadomość poprzez formularz zapytania na naszej stronie.
Właściwości oraz wygląd elementów magnetycznych sprawdzisz dzięki naszemu kalkulatorze siły.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Szczegóły techniczne - MW 20x2.5 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 20x2.5 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010042
GTIN/EAN 5906301810414
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 20 mm [±0,1 mm]
Wysokość 2.5 mm [±0,1 mm]
Waga 5.89 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 2.41 kg / 23.65 N
Indukcja magnetyczna ~ ? 150.34 mT / 1503 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 20x2.5 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja techniczna magnesu - raport

Poniższe informacje są bezpośredni efekt kalkulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 20x2.5 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 1503 Gs
150.3 mT
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
mocny
1 mm 1431 Gs
143.1 mT
2.18 kg / 4.82 lbs
2184.9 g / 21.4 N
mocny
2 mm 1328 Gs
132.8 mT
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
niskie ryzyko
3 mm 1206 Gs
120.6 mT
1.55 kg / 3.42 lbs
1552.2 g / 15.2 N
niskie ryzyko
5 mm 947 Gs
94.7 mT
0.96 kg / 2.11 lbs
957.1 g / 9.4 N
niskie ryzyko
10 mm 457 Gs
45.7 mT
0.22 kg / 0.49 lbs
223.1 g / 2.2 N
niskie ryzyko
15 mm 224 Gs
22.4 mT
0.05 kg / 0.12 lbs
53.7 g / 0.5 N
niskie ryzyko
20 mm 120 Gs
12.0 mT
0.02 kg / 0.03 lbs
15.4 g / 0.2 N
niskie ryzyko
30 mm 44 Gs
4.4 mT
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
niskie ryzyko
50 mm 11 Gs
1.1 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
niskie ryzyko

Tabela 2: Równoległa siła obsunięcia (ściana)
MW 20x2.5 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.48 kg / 1.06 lbs
482.0 g / 4.7 N
1 mm Stal (~0.2) 0.44 kg / 0.96 lbs
436.0 g / 4.3 N
2 mm Stal (~0.2) 0.38 kg / 0.83 lbs
376.0 g / 3.7 N
3 mm Stal (~0.2) 0.31 kg / 0.68 lbs
310.0 g / 3.0 N
5 mm Stal (~0.2) 0.19 kg / 0.42 lbs
192.0 g / 1.9 N
10 mm Stal (~0.2) 0.04 kg / 0.10 lbs
44.0 g / 0.4 N
15 mm Stal (~0.2) 0.01 kg / 0.02 lbs
10.0 g / 0.1 N
20 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 20x2.5 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.72 kg / 1.59 lbs
723.0 g / 7.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N

Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x2.5 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
1 mm
25%
0.60 kg / 1.33 lbs
602.5 g / 5.9 N
2 mm
50%
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
3 mm
75%
1.81 kg / 3.98 lbs
1807.5 g / 17.7 N
5 mm
100%
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
10 mm
100%
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
11 mm
100%
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
12 mm
100%
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N

Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 20x2.5 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
OK
40 °C -2.2% 2.36 kg / 5.20 lbs
2357.0 g / 23.1 N
OK
60 °C -4.4% 2.30 kg / 5.08 lbs
2304.0 g / 22.6 N
80 °C -6.6% 2.25 kg / 4.96 lbs
2250.9 g / 22.1 N
100 °C -28.8% 1.72 kg / 3.78 lbs
1715.9 g / 16.8 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 20x2.5 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 4.38 kg / 9.65 lbs
2 771 Gs
0.66 kg / 1.45 lbs
656 g / 6.4 N
N/A
1 mm 4.20 kg / 9.25 lbs
2 944 Gs
0.63 kg / 1.39 lbs
629 g / 6.2 N
3.78 kg / 8.33 lbs
~0 Gs
2 mm 3.97 kg / 8.75 lbs
2 862 Gs
0.60 kg / 1.31 lbs
595 g / 5.8 N
3.57 kg / 7.87 lbs
~0 Gs
3 mm 3.70 kg / 8.17 lbs
2 766 Gs
0.56 kg / 1.22 lbs
556 g / 5.5 N
3.33 kg / 7.35 lbs
~0 Gs
5 mm 3.12 kg / 6.88 lbs
2 538 Gs
0.47 kg / 1.03 lbs
468 g / 4.6 N
2.81 kg / 6.19 lbs
~0 Gs
10 mm 1.74 kg / 3.83 lbs
1 895 Gs
0.26 kg / 0.57 lbs
261 g / 2.6 N
1.56 kg / 3.45 lbs
~0 Gs
20 mm 0.41 kg / 0.89 lbs
915 Gs
0.06 kg / 0.13 lbs
61 g / 0.6 N
0.36 kg / 0.80 lbs
~0 Gs
50 mm 0.01 kg / 0.02 lbs
140 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.01 lbs
88 Gs
0.00 kg / 0.00 lbs
1 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
58 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
41 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
29 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
22 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 20x2.5 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 7.0 cm
Implant słuchowy 10 Gs (1.0 mT) 5.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 4.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 3.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 3.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 20x2.5 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 21.55 km/h
(5.99 m/s)
0.11 J
30 mm 35.35 km/h
(9.82 m/s)
0.28 J
50 mm 45.62 km/h
(12.67 m/s)
0.47 J
100 mm 64.51 km/h
(17.92 m/s)
0.95 J

Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x2.5 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Strumień)
MW 20x2.5 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 5 996 Mx 60.0 µWb
Współczynnik Pc 0.19 Niski (Płaski)

Tabela 11: Zastosowanie podwodne
MW 20x2.5 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 2.41 kg Standard
Woda (dno rzeki) 2.76 kg
(+0.35 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły oderwania.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.

3. Spadek mocy w temperaturze

*Dla materiału N38 maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Dane środowiskowe
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010042-2026
Przelicznik magnesów
Udźwig magnesu

Moc pola

Zobacz też inne propozycje

Oferowany produkt to ekstremalnie mocny magnes walcowy, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø20x2.5 mm gwarantuje najwyższą gęstość energii. Model MW 20x2.5 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 2.41 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce, co zapewnia szybką realizację zamówienia. Ponadto, jego trójwarstwowa powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Z powodzeniem sprawdza się w projektach DIY, zaawansowanej automatyce oraz szeroko pojętym przemyśle, służąc jako element mocujący lub wykonawczy. Dzięki dużej mocy 23.65 N przy wadze zaledwie 5.89 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie kluczowa jest niska waga.
Ze względu na kruchość materiału NdFeB, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to odpryśnięciem powłoki tego precyzyjnego komponentu. Dla zapewnienia długotrwałej wytrzymałości w przemyśle, stosuje się specjalistyczne kleje przemysłowe, które nie reagują z powłoką niklową i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Klasa N38 to najczęściej wybierany standard dla profesjonalnych magnesów neodymowych, oferujący optymalny stosunek ceny do mocy oraz stabilność pracy. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø20x2.5), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem dostępnym od ręki w naszym magazynie.
Prezentowany produkt to magnes neodymowy o precyzyjnie określonych parametrach: średnica 20 mm i wysokość 2.5 mm. Wartość 23.65 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 5.89 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten walec jest magnesowany osiowo (wzdłuż wysokości 2.5 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane diametralnie, jeśli Twój projekt tego wymaga.

Zalety oraz wady neodymowych magnesów Nd2Fe14B.

Plusy

Warto zwrócić uwagę, że obok wysokiej siły, magnesy te wyróżniają się następującymi plusami:
  • Długowieczność to ich atut – nawet po dekady spadek mocy wynosi tylko ~1% (wg testów).
  • Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
  • Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
  • Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
  • Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
  • Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
  • Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.

Ograniczenia

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Analiza siły trzymania

Maksymalna siła przyciągania magnesuco się na to składa?

Podany w tabeli udźwig jest wartością teoretyczną maksymalną przeprowadzonego w następującej konfiguracji:
  • z zastosowaniem podłoża ze stali niskowęglowej, działającej jako element zamykający obwód
  • o grubości wynoszącej minimum 10 mm
  • o idealnie gładkiej powierzchni kontaktu
  • w warunkach idealnego przylegania (metal do metalu)
  • przy prostopadłym kierunku działania siły (kąt 90 stopni)
  • w stabilnej temperaturze pokojowej

Kluczowe elementy wpływające na udźwig

Trzeba mieć na uwadze, że trzymanie magnesu może być niższe zależnie od następujących czynników, w kolejności ważności:
  • Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
  • Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
  • Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
  • Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
  • Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
  • Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.

Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.

Bezpieczna praca przy magnesach neodymowych
Nośniki danych

Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).

Nadwrażliwość na metale

Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.

Zakaz zabawy

Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.

Elektronika precyzyjna

Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.

Trwała utrata siły

Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).

Magnesy są kruche

Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.

Siła zgniatająca

Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Łatwopalność

Proszek generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Zagrożenie życia

Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.

Zasady obsługi

Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.

Zagrożenie! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98