MW 20x2.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010042
GTIN/EAN: 5906301810414
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2.5 mm [±0,1 mm]
Waga
5.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.41 kg / 23.65 N
Indukcja magnetyczna
150.34 mT / 1503 Gs
Powłoka
[NiCuNi] nikiel
2.51 ZŁ z VAT / szt. + cena za transport
2.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub zostaw wiadomość poprzez
formularz zapytania
na naszej stronie.
Właściwości oraz wygląd elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 20x2.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x2.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010042 |
| GTIN/EAN | 5906301810414 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2.5 mm [±0,1 mm] |
| Waga | 5.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.41 kg / 23.65 N |
| Indukcja magnetyczna ~ ? | 150.34 mT / 1503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Poniższe informacje są bezpośredni efekt kalkulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MW 20x2.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1503 Gs
150.3 mT
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
mocny |
| 1 mm |
1431 Gs
143.1 mT
|
2.18 kg / 4.82 lbs
2184.9 g / 21.4 N
|
mocny |
| 2 mm |
1328 Gs
132.8 mT
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
niskie ryzyko |
| 3 mm |
1206 Gs
120.6 mT
|
1.55 kg / 3.42 lbs
1552.2 g / 15.2 N
|
niskie ryzyko |
| 5 mm |
947 Gs
94.7 mT
|
0.96 kg / 2.11 lbs
957.1 g / 9.4 N
|
niskie ryzyko |
| 10 mm |
457 Gs
45.7 mT
|
0.22 kg / 0.49 lbs
223.1 g / 2.2 N
|
niskie ryzyko |
| 15 mm |
224 Gs
22.4 mT
|
0.05 kg / 0.12 lbs
53.7 g / 0.5 N
|
niskie ryzyko |
| 20 mm |
120 Gs
12.0 mT
|
0.02 kg / 0.03 lbs
15.4 g / 0.2 N
|
niskie ryzyko |
| 30 mm |
44 Gs
4.4 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 20x2.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.96 lbs
436.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 3 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| 5 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 20x2.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.72 kg / 1.59 lbs
723.0 g / 7.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x2.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| 1 mm |
|
0.60 kg / 1.33 lbs
602.5 g / 5.9 N
|
| 2 mm |
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
| 3 mm |
|
1.81 kg / 3.98 lbs
1807.5 g / 17.7 N
|
| 5 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 10 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 11 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 12 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 20x2.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
OK |
| 40 °C | -2.2% |
2.36 kg / 5.20 lbs
2357.0 g / 23.1 N
|
OK |
| 60 °C | -4.4% |
2.30 kg / 5.08 lbs
2304.0 g / 22.6 N
|
|
| 80 °C | -6.6% |
2.25 kg / 4.96 lbs
2250.9 g / 22.1 N
|
|
| 100 °C | -28.8% |
1.72 kg / 3.78 lbs
1715.9 g / 16.8 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 20x2.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.38 kg / 9.65 lbs
2 771 Gs
|
0.66 kg / 1.45 lbs
656 g / 6.4 N
|
N/A |
| 1 mm |
4.20 kg / 9.25 lbs
2 944 Gs
|
0.63 kg / 1.39 lbs
629 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 2 mm |
3.97 kg / 8.75 lbs
2 862 Gs
|
0.60 kg / 1.31 lbs
595 g / 5.8 N
|
3.57 kg / 7.87 lbs
~0 Gs
|
| 3 mm |
3.70 kg / 8.17 lbs
2 766 Gs
|
0.56 kg / 1.22 lbs
556 g / 5.5 N
|
3.33 kg / 7.35 lbs
~0 Gs
|
| 5 mm |
3.12 kg / 6.88 lbs
2 538 Gs
|
0.47 kg / 1.03 lbs
468 g / 4.6 N
|
2.81 kg / 6.19 lbs
~0 Gs
|
| 10 mm |
1.74 kg / 3.83 lbs
1 895 Gs
|
0.26 kg / 0.57 lbs
261 g / 2.6 N
|
1.56 kg / 3.45 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.89 lbs
915 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
88 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MW 20x2.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 20x2.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.55 km/h
(5.99 m/s)
|
0.11 J | |
| 30 mm |
35.35 km/h
(9.82 m/s)
|
0.28 J | |
| 50 mm |
45.62 km/h
(12.67 m/s)
|
0.47 J | |
| 100 mm |
64.51 km/h
(17.92 m/s)
|
0.95 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 20x2.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 20x2.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 996 Mx | 60.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 20x2.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.41 kg | Standard |
| Woda (dno rzeki) |
2.76 kg
(+0.35 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi tylko ~1% (wg testów).
- Wyróżniają się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- z zastosowaniem podłoża ze stali niskowęglowej, działającej jako element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni kontaktu
- w warunkach idealnego przylegania (metal do metalu)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Kluczowe elementy wpływające na udźwig
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) działa jak izolator, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę mamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Większa zawartość węgla obniżają właściwości magnetyczne i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między magnesem, a blachą zmniejsza udźwig.
Bezpieczna praca przy magnesach neodymowych
Nośniki danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Nadwrażliwość na metale
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Zakaz zabawy
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Trwała utrata siły
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Magnesy są kruche
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Łatwopalność
Proszek generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
