MW 20x2.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010042
GTIN/EAN: 5906301810414
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2.5 mm [±0,1 mm]
Waga
5.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.41 kg / 23.65 N
Indukcja magnetyczna
150.34 mT / 1503 Gs
Powłoka
[NiCuNi] nikiel
2.51 ZŁ z VAT / szt. + cena za transport
2.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo napisz za pomocą
formularz
przez naszą stronę.
Właściwości oraz formę magnesów przetestujesz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MW 20x2.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x2.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010042 |
| GTIN/EAN | 5906301810414 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2.5 mm [±0,1 mm] |
| Waga | 5.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.41 kg / 23.65 N |
| Indukcja magnetyczna ~ ? | 150.34 mT / 1503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MW 20x2.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1503 Gs
150.3 mT
|
2.41 kg / 2410.0 g
23.6 N
|
mocny |
| 1 mm |
1431 Gs
143.1 mT
|
2.18 kg / 2184.9 g
21.4 N
|
mocny |
| 2 mm |
1328 Gs
132.8 mT
|
1.88 kg / 1882.0 g
18.5 N
|
bezpieczny |
| 3 mm |
1206 Gs
120.6 mT
|
1.55 kg / 1552.2 g
15.2 N
|
bezpieczny |
| 5 mm |
947 Gs
94.7 mT
|
0.96 kg / 957.1 g
9.4 N
|
bezpieczny |
| 10 mm |
457 Gs
45.7 mT
|
0.22 kg / 223.1 g
2.2 N
|
bezpieczny |
| 15 mm |
224 Gs
22.4 mT
|
0.05 kg / 53.7 g
0.5 N
|
bezpieczny |
| 20 mm |
120 Gs
12.0 mT
|
0.02 kg / 15.4 g
0.2 N
|
bezpieczny |
| 30 mm |
44 Gs
4.4 mT
|
0.00 kg / 2.1 g
0.0 N
|
bezpieczny |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (pion)
MW 20x2.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.48 kg / 482.0 g
4.7 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 436.0 g
4.3 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 376.0 g
3.7 N
|
| 3 mm | Stal (~0.2) |
0.31 kg / 310.0 g
3.0 N
|
| 5 mm | Stal (~0.2) |
0.19 kg / 192.0 g
1.9 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 20x2.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.72 kg / 723.0 g
7.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.48 kg / 482.0 g
4.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.24 kg / 241.0 g
2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.21 kg / 1205.0 g
11.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 20x2.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.24 kg / 241.0 g
2.4 N
|
| 1 mm |
|
0.60 kg / 602.5 g
5.9 N
|
| 2 mm |
|
1.21 kg / 1205.0 g
11.8 N
|
| 5 mm |
|
2.41 kg / 2410.0 g
23.6 N
|
| 10 mm |
|
2.41 kg / 2410.0 g
23.6 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MW 20x2.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.41 kg / 2410.0 g
23.6 N
|
OK |
| 40 °C | -2.2% |
2.36 kg / 2357.0 g
23.1 N
|
OK |
| 60 °C | -4.4% |
2.30 kg / 2304.0 g
22.6 N
|
|
| 80 °C | -6.6% |
2.25 kg / 2250.9 g
22.1 N
|
|
| 100 °C | -28.8% |
1.72 kg / 1715.9 g
16.8 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MW 20x2.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.38 kg / 4376 g
42.9 N
2 771 Gs
|
N/A |
| 1 mm |
4.20 kg / 4196 g
41.2 N
2 944 Gs
|
3.78 kg / 3777 g
37.0 N
~0 Gs
|
| 2 mm |
3.97 kg / 3967 g
38.9 N
2 862 Gs
|
3.57 kg / 3571 g
35.0 N
~0 Gs
|
| 3 mm |
3.70 kg / 3704 g
36.3 N
2 766 Gs
|
3.33 kg / 3334 g
32.7 N
~0 Gs
|
| 5 mm |
3.12 kg / 3119 g
30.6 N
2 538 Gs
|
2.81 kg / 2807 g
27.5 N
~0 Gs
|
| 10 mm |
1.74 kg / 1738 g
17.0 N
1 895 Gs
|
1.56 kg / 1564 g
15.3 N
~0 Gs
|
| 20 mm |
0.41 kg / 405 g
4.0 N
915 Gs
|
0.36 kg / 365 g
3.6 N
~0 Gs
|
| 50 mm |
0.01 kg / 10 g
0.1 N
140 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MW 20x2.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 20x2.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.55 km/h
(5.99 m/s)
|
0.11 J | |
| 30 mm |
35.35 km/h
(9.82 m/s)
|
0.28 J | |
| 50 mm |
45.62 km/h
(12.67 m/s)
|
0.47 J | |
| 100 mm |
64.51 km/h
(17.92 m/s)
|
0.95 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x2.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 20x2.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 996 Mx | 60.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 20x2.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.41 kg | Standard |
| Woda (dno rzeki) |
2.76 kg
(+0.35 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa zaledwie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Wyróżniają się wyjątkową odpornością na rozmagnesowanie, nawet w silnych polach zewnętrznych.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o grubości przynajmniej 10 mm
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Chronić przed dziećmi
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Ryzyko zmiażdżenia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Alergia na nikiel
Część populacji wykazuje alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może skutkować zaczerwienienie skóry. Zalecamy stosowanie rękawic bezlateksowych.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Magnesy są kruche
Choć wyglądają jak stal, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Uwaga medyczna
Pacjenci z rozrusznikiem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Maksymalna temperatura
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zniszczy jego domenę magnetyczną i udźwig.
