MW 20x2.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010042
GTIN/EAN: 5906301810414
Średnica Ø
20 mm [±0,1 mm]
Wysokość
2.5 mm [±0,1 mm]
Waga
5.89 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.41 kg / 23.65 N
Indukcja magnetyczna
150.34 mT / 1503 Gs
Powłoka
[NiCuNi] nikiel
2.51 ZŁ z VAT / szt. + cena za transport
2.04 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie skontaktuj się za pomocą
nasz formularz online
na stronie kontaktowej.
Właściwości i budowę elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MW 20x2.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 20x2.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010042 |
| GTIN/EAN | 5906301810414 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 2.5 mm [±0,1 mm] |
| Waga | 5.89 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.41 kg / 23.65 N |
| Indukcja magnetyczna ~ ? | 150.34 mT / 1503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Poniższe dane stanowią wynik kalkulacji inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MW 20x2.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1503 Gs
150.3 mT
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
średnie ryzyko |
| 1 mm |
1431 Gs
143.1 mT
|
2.18 kg / 4.82 lbs
2184.9 g / 21.4 N
|
średnie ryzyko |
| 2 mm |
1328 Gs
132.8 mT
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
niskie ryzyko |
| 3 mm |
1206 Gs
120.6 mT
|
1.55 kg / 3.42 lbs
1552.2 g / 15.2 N
|
niskie ryzyko |
| 5 mm |
947 Gs
94.7 mT
|
0.96 kg / 2.11 lbs
957.1 g / 9.4 N
|
niskie ryzyko |
| 10 mm |
457 Gs
45.7 mT
|
0.22 kg / 0.49 lbs
223.1 g / 2.2 N
|
niskie ryzyko |
| 15 mm |
224 Gs
22.4 mT
|
0.05 kg / 0.12 lbs
53.7 g / 0.5 N
|
niskie ryzyko |
| 20 mm |
120 Gs
12.0 mT
|
0.02 kg / 0.03 lbs
15.4 g / 0.2 N
|
niskie ryzyko |
| 30 mm |
44 Gs
4.4 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 20x2.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.96 lbs
436.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 3 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| 5 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 20x2.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.72 kg / 1.59 lbs
723.0 g / 7.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 20x2.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| 1 mm |
|
0.60 kg / 1.33 lbs
602.5 g / 5.9 N
|
| 2 mm |
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
| 3 mm |
|
1.81 kg / 3.98 lbs
1807.5 g / 17.7 N
|
| 5 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 10 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 11 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 12 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 20x2.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
OK |
| 40 °C | -2.2% |
2.36 kg / 5.20 lbs
2357.0 g / 23.1 N
|
OK |
| 60 °C | -4.4% |
2.30 kg / 5.08 lbs
2304.0 g / 22.6 N
|
|
| 80 °C | -6.6% |
2.25 kg / 4.96 lbs
2250.9 g / 22.1 N
|
|
| 100 °C | -28.8% |
1.72 kg / 3.78 lbs
1715.9 g / 16.8 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 20x2.5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.38 kg / 9.65 lbs
2 771 Gs
|
0.66 kg / 1.45 lbs
656 g / 6.4 N
|
N/A |
| 1 mm |
4.20 kg / 9.25 lbs
2 944 Gs
|
0.63 kg / 1.39 lbs
629 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 2 mm |
3.97 kg / 8.75 lbs
2 862 Gs
|
0.60 kg / 1.31 lbs
595 g / 5.8 N
|
3.57 kg / 7.87 lbs
~0 Gs
|
| 3 mm |
3.70 kg / 8.17 lbs
2 766 Gs
|
0.56 kg / 1.22 lbs
556 g / 5.5 N
|
3.33 kg / 7.35 lbs
~0 Gs
|
| 5 mm |
3.12 kg / 6.88 lbs
2 538 Gs
|
0.47 kg / 1.03 lbs
468 g / 4.6 N
|
2.81 kg / 6.19 lbs
~0 Gs
|
| 10 mm |
1.74 kg / 3.83 lbs
1 895 Gs
|
0.26 kg / 0.57 lbs
261 g / 2.6 N
|
1.56 kg / 3.45 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.89 lbs
915 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
88 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - ostrzeżenia
MW 20x2.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 20x2.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.55 km/h
(5.99 m/s)
|
0.11 J | |
| 30 mm |
35.35 km/h
(9.82 m/s)
|
0.28 J | |
| 50 mm |
45.62 km/h
(12.67 m/s)
|
0.47 J | |
| 100 mm |
64.51 km/h
(17.92 m/s)
|
0.95 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 20x2.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 20x2.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 996 Mx | 60.0 µWb |
| Współczynnik Pc | 0.19 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 20x2.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.41 kg | Standard |
| Woda (dno rzeki) |
2.76 kg
(+0.35 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.19
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (teoretycznie).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Maksymalny udźwig magnesu – co się na to składa?
- z zastosowaniem podłoża ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- której grubość wynosi ok. 10 mm
- charakteryzującej się gładkością
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- podczas odrywania w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – obecność ciała obcego (rdza, taśma, szczelina) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr mamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano z wykorzystaniem gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu nośność jest mniejsza nawet 5 razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża udźwig.
Bezpieczna praca przy magnesach z neodymem
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Magnesy są kruche
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Nie dawać dzieciom
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zagrożenie zapłonem
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Ostrożność wymagana
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i udźwig.
Nadwrażliwość na metale
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
