MW 18x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010401
GTIN/EAN: 5906301811107
Średnica Ø
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
19.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.76 kg / 105.51 N
Indukcja magnetyczna
460.54 mT / 4605 Gs
Powłoka
[NiCuNi] nikiel
7.82 ZŁ z VAT / szt. + cena za transport
6.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
albo napisz korzystając z
formularz kontaktowy
w sekcji kontakt.
Udźwig i budowę magnesu skontrolujesz w naszym
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Specyfikacja techniczna produktu - MW 18x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010401 |
| GTIN/EAN | 5906301811107 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 19.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.76 kg / 105.51 N |
| Indukcja magnetyczna ~ ? | 460.54 mT / 4605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Niniejsze informacje są bezpośredni efekt kalkulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MW 18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4604 Gs
460.4 mT
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
miażdżący |
| 1 mm |
4114 Gs
411.4 mT
|
8.59 kg / 18.94 lbs
8592.4 g / 84.3 N
|
mocny |
| 2 mm |
3615 Gs
361.5 mT
|
6.64 kg / 14.63 lbs
6635.0 g / 65.1 N
|
mocny |
| 3 mm |
3137 Gs
313.7 mT
|
5.00 kg / 11.01 lbs
4996.2 g / 49.0 N
|
mocny |
| 5 mm |
2305 Gs
230.5 mT
|
2.70 kg / 5.95 lbs
2698.6 g / 26.5 N
|
mocny |
| 10 mm |
1045 Gs
104.5 mT
|
0.55 kg / 1.22 lbs
555.0 g / 5.4 N
|
bezpieczny |
| 15 mm |
517 Gs
51.7 mT
|
0.14 kg / 0.30 lbs
135.7 g / 1.3 N
|
bezpieczny |
| 20 mm |
285 Gs
28.5 mT
|
0.04 kg / 0.09 lbs
41.1 g / 0.4 N
|
bezpieczny |
| 30 mm |
110 Gs
11.0 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
bezpieczny |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła zsuwania (ściana)
MW 18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| 1 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1718.0 g / 16.9 N
|
| 2 mm | Stal (~0.2) |
1.33 kg / 2.93 lbs
1328.0 g / 13.0 N
|
| 3 mm | Stal (~0.2) |
1.00 kg / 2.20 lbs
1000.0 g / 9.8 N
|
| 5 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
540.0 g / 5.3 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.38 kg / 11.86 lbs
5380.0 g / 52.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MW 18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
538.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1345.0 g / 13.2 N
|
| 2 mm |
|
2.69 kg / 5.93 lbs
2690.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.90 lbs
4035.0 g / 39.6 N
|
| 5 mm |
|
6.73 kg / 14.83 lbs
6725.0 g / 66.0 N
|
| 10 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 11 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 12 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
Tabela 5: Praca w cieple (stabilność) - spadek mocy
MW 18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
OK |
| 40 °C | -2.2% |
10.52 kg / 23.20 lbs
10523.3 g / 103.2 N
|
OK |
| 60 °C | -4.4% |
10.29 kg / 22.68 lbs
10286.6 g / 100.9 N
|
OK |
| 80 °C | -6.6% |
10.05 kg / 22.16 lbs
10049.8 g / 98.6 N
|
|
| 100 °C | -28.8% |
7.66 kg / 16.89 lbs
7661.1 g / 75.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MW 18x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.25 kg / 73.30 lbs
5 648 Gs
|
4.99 kg / 10.99 lbs
4987 g / 48.9 N
|
N/A |
| 1 mm |
29.87 kg / 65.85 lbs
8 727 Gs
|
4.48 kg / 9.88 lbs
4480 g / 44.0 N
|
26.88 kg / 59.27 lbs
~0 Gs
|
| 2 mm |
26.55 kg / 58.53 lbs
8 228 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
23.90 kg / 52.68 lbs
~0 Gs
|
| 3 mm |
23.41 kg / 51.62 lbs
7 727 Gs
|
3.51 kg / 7.74 lbs
3512 g / 34.5 N
|
21.07 kg / 46.46 lbs
~0 Gs
|
| 5 mm |
17.84 kg / 39.33 lbs
6 744 Gs
|
2.68 kg / 5.90 lbs
2676 g / 26.3 N
|
16.06 kg / 35.40 lbs
~0 Gs
|
| 10 mm |
8.34 kg / 18.38 lbs
4 611 Gs
|
1.25 kg / 2.76 lbs
1251 g / 12.3 N
|
7.50 kg / 16.54 lbs
~0 Gs
|
| 20 mm |
1.71 kg / 3.78 lbs
2 091 Gs
|
0.26 kg / 0.57 lbs
257 g / 2.5 N
|
1.54 kg / 3.40 lbs
~0 Gs
|
| 50 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
221 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
106 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
78 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MW 18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.70 km/h
(6.86 m/s)
|
0.45 J | |
| 30 mm |
41.49 km/h
(11.52 m/s)
|
1.27 J | |
| 50 mm |
53.54 km/h
(14.87 m/s)
|
2.11 J | |
| 100 mm |
75.72 km/h
(21.03 m/s)
|
4.22 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 828 Mx | 118.3 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.76 kg | Standard |
| Woda (dno rzeki) |
12.32 kg
(+1.56 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.
Wady
- Kruchość to ich mankament. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- o grubości przynajmniej 10 mm
- z płaszczyzną wolną od rys
- przy zerowej szczelinie (bez farby)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Stale stopowe obniżają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
Ochrona urządzeń
Bardzo silne pole magnetyczne może skasować dane na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Trwała utrata siły
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Rozruszniki serca
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Chronić przed dziećmi
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Samozapłon
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Ostrzeżenie dla alergików
Niektóre osoby ma uczulenie na pierwiastek nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może powodować wysypkę. Rekomendujemy używanie rękawic bezlateksowych.
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Ochrona dłoni
Silne magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Uwaga na odpryski
Uwaga na odpryski. Magnesy mogą eksplodować przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
