MW 18x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010401
GTIN/EAN: 5906301811107
Średnica Ø
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
19.09 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.76 kg / 105.51 N
Indukcja magnetyczna
460.54 mT / 4605 Gs
Powłoka
[NiCuNi] nikiel
7.82 ZŁ z VAT / szt. + cena za transport
6.36 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub zostaw wiadomość przez
formularz zgłoszeniowy
w sekcji kontakt.
Właściwości oraz formę magnesów neodymowych obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MW 18x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010401 |
| GTIN/EAN | 5906301811107 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 19.09 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.76 kg / 105.51 N |
| Indukcja magnetyczna ~ ? | 460.54 mT / 4605 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Poniższe wartości stanowią rezultat symulacji matematycznej. Wartości oparte są na algorytmach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MW 18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4604 Gs
460.4 mT
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
miażdżący |
| 1 mm |
4114 Gs
411.4 mT
|
8.59 kg / 18.94 lbs
8592.4 g / 84.3 N
|
średnie ryzyko |
| 2 mm |
3615 Gs
361.5 mT
|
6.64 kg / 14.63 lbs
6635.0 g / 65.1 N
|
średnie ryzyko |
| 3 mm |
3137 Gs
313.7 mT
|
5.00 kg / 11.01 lbs
4996.2 g / 49.0 N
|
średnie ryzyko |
| 5 mm |
2305 Gs
230.5 mT
|
2.70 kg / 5.95 lbs
2698.6 g / 26.5 N
|
średnie ryzyko |
| 10 mm |
1045 Gs
104.5 mT
|
0.55 kg / 1.22 lbs
555.0 g / 5.4 N
|
bezpieczny |
| 15 mm |
517 Gs
51.7 mT
|
0.14 kg / 0.30 lbs
135.7 g / 1.3 N
|
bezpieczny |
| 20 mm |
285 Gs
28.5 mT
|
0.04 kg / 0.09 lbs
41.1 g / 0.4 N
|
bezpieczny |
| 30 mm |
110 Gs
11.0 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
bezpieczny |
| 50 mm |
29 Gs
2.9 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MW 18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| 1 mm | Stal (~0.2) |
1.72 kg / 3.79 lbs
1718.0 g / 16.9 N
|
| 2 mm | Stal (~0.2) |
1.33 kg / 2.93 lbs
1328.0 g / 13.0 N
|
| 3 mm | Stal (~0.2) |
1.00 kg / 2.20 lbs
1000.0 g / 9.8 N
|
| 5 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
540.0 g / 5.3 N
|
| 10 mm | Stal (~0.2) |
0.11 kg / 0.24 lbs
110.0 g / 1.1 N
|
| 15 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.23 kg / 7.12 lbs
3228.0 g / 31.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.15 kg / 4.74 lbs
2152.0 g / 21.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.08 kg / 2.37 lbs
1076.0 g / 10.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.38 kg / 11.86 lbs
5380.0 g / 52.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.54 kg / 1.19 lbs
538.0 g / 5.3 N
|
| 1 mm |
|
1.35 kg / 2.97 lbs
1345.0 g / 13.2 N
|
| 2 mm |
|
2.69 kg / 5.93 lbs
2690.0 g / 26.4 N
|
| 3 mm |
|
4.04 kg / 8.90 lbs
4035.0 g / 39.6 N
|
| 5 mm |
|
6.73 kg / 14.83 lbs
6725.0 g / 66.0 N
|
| 10 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 11 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
| 12 mm |
|
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MW 18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.76 kg / 23.72 lbs
10760.0 g / 105.6 N
|
OK |
| 40 °C | -2.2% |
10.52 kg / 23.20 lbs
10523.3 g / 103.2 N
|
OK |
| 60 °C | -4.4% |
10.29 kg / 22.68 lbs
10286.6 g / 100.9 N
|
OK |
| 80 °C | -6.6% |
10.05 kg / 22.16 lbs
10049.8 g / 98.6 N
|
|
| 100 °C | -28.8% |
7.66 kg / 16.89 lbs
7661.1 g / 75.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 18x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
33.25 kg / 73.30 lbs
5 648 Gs
|
4.99 kg / 10.99 lbs
4987 g / 48.9 N
|
N/A |
| 1 mm |
29.87 kg / 65.85 lbs
8 727 Gs
|
4.48 kg / 9.88 lbs
4480 g / 44.0 N
|
26.88 kg / 59.27 lbs
~0 Gs
|
| 2 mm |
26.55 kg / 58.53 lbs
8 228 Gs
|
3.98 kg / 8.78 lbs
3983 g / 39.1 N
|
23.90 kg / 52.68 lbs
~0 Gs
|
| 3 mm |
23.41 kg / 51.62 lbs
7 727 Gs
|
3.51 kg / 7.74 lbs
3512 g / 34.5 N
|
21.07 kg / 46.46 lbs
~0 Gs
|
| 5 mm |
17.84 kg / 39.33 lbs
6 744 Gs
|
2.68 kg / 5.90 lbs
2676 g / 26.3 N
|
16.06 kg / 35.40 lbs
~0 Gs
|
| 10 mm |
8.34 kg / 18.38 lbs
4 611 Gs
|
1.25 kg / 2.76 lbs
1251 g / 12.3 N
|
7.50 kg / 16.54 lbs
~0 Gs
|
| 20 mm |
1.71 kg / 3.78 lbs
2 091 Gs
|
0.26 kg / 0.57 lbs
257 g / 2.5 N
|
1.54 kg / 3.40 lbs
~0 Gs
|
| 50 mm |
0.05 kg / 0.10 lbs
342 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.09 lbs
~0 Gs
|
| 60 mm |
0.02 kg / 0.04 lbs
221 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.02 lbs
150 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
106 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
78 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 9.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 7.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.70 km/h
(6.86 m/s)
|
0.45 J | |
| 30 mm |
41.49 km/h
(11.52 m/s)
|
1.27 J | |
| 50 mm |
53.54 km/h
(14.87 m/s)
|
2.11 J | |
| 100 mm |
75.72 km/h
(21.03 m/s)
|
4.22 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 11 828 Mx | 118.3 µWb |
| Współczynnik Pc | 0.63 | Wysoki (Stabilny) |
Tabela 11: Zastosowanie podwodne
MW 18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.76 kg | Standard |
| Woda (dno rzeki) |
12.32 kg
(+1.56 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.63
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i sprzętu medycznego.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Delikatność mechaniczna to ich mankament. Łatwo ulegają uszkodzeniu przy upadku, dlatego warto stosować obudowy lub montaż w stali.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w gumowej otulinie.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Najwyższa nośność magnesu – co się na to składa?
- przy użyciu zwory ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której grubość to min. 10 mm
- z powierzchnią idealnie równą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Wektor obciążenia – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.
Zasady BHP dla użytkowników magnesów
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie dla najmłodszych
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać połknięte, co prowadzi do perforacji jelit. Trzymaj z dala od niepowołanych osób.
Utrata mocy w cieple
Uważaj na temperaturę. Ekspozycja magnesu na wysoką temperaturę trwale osłabi jego strukturę magnetyczną i udźwig.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko złamań
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Samozapłon
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ostrożność wymagana
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z ogromną siłą, często szybciej niż jesteś w stanie przewidzieć.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Uczulenie na powłokę
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast zakończyć pracę z magnesami i zabezpieczyć dłonie.
