MW 20x18 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010040
GTIN/EAN: 5906301810391
Średnica Ø
20 mm [±0,1 mm]
Wysokość
18 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
13.19 kg / 129.35 N
Indukcja magnetyczna
541.64 mT / 5416 Gs
Powłoka
[NiCuNi] nikiel
23.54 ZŁ z VAT / szt. + cena za transport
19.14 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz pogadać o magnesach?
Zadzwoń do nas
+48 22 499 98 98
albo daj znać poprzez
nasz formularz online
na naszej stronie.
Masę oraz budowę magnesu neodymowego skontrolujesz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 20x18 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 20x18 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010040 |
| GTIN/EAN | 5906301810391 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 20 mm [±0,1 mm] |
| Wysokość | 18 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 13.19 kg / 129.35 N |
| Indukcja magnetyczna ~ ? | 541.64 mT / 5416 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - parametry techniczne
Niniejsze dane są bezpośredni efekt kalkulacji inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
MW 20x18 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5414 Gs
541.4 mT
|
13.19 kg / 13190.0 g
129.4 N
|
miażdżący |
| 1 mm |
4870 Gs
487.0 mT
|
10.67 kg / 10669.5 g
104.7 N
|
miażdżący |
| 2 mm |
4330 Gs
433.0 mT
|
8.43 kg / 8434.2 g
82.7 N
|
mocny |
| 3 mm |
3816 Gs
381.6 mT
|
6.55 kg / 6552.7 g
64.3 N
|
mocny |
| 5 mm |
2913 Gs
291.3 mT
|
3.82 kg / 3818.4 g
37.5 N
|
mocny |
| 10 mm |
1455 Gs
145.5 mT
|
0.95 kg / 952.2 g
9.3 N
|
słaby uchwyt |
| 15 mm |
775 Gs
77.5 mT
|
0.27 kg / 270.1 g
2.7 N
|
słaby uchwyt |
| 20 mm |
450 Gs
45.0 mT
|
0.09 kg / 91.3 g
0.9 N
|
słaby uchwyt |
| 30 mm |
188 Gs
18.8 mT
|
0.02 kg / 15.9 g
0.2 N
|
słaby uchwyt |
| 50 mm |
54 Gs
5.4 mT
|
0.00 kg / 1.3 g
0.0 N
|
słaby uchwyt |
MW 20x18 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.64 kg / 2638.0 g
25.9 N
|
| 1 mm | Stal (~0.2) |
2.13 kg / 2134.0 g
20.9 N
|
| 2 mm | Stal (~0.2) |
1.69 kg / 1686.0 g
16.5 N
|
| 3 mm | Stal (~0.2) |
1.31 kg / 1310.0 g
12.9 N
|
| 5 mm | Stal (~0.2) |
0.76 kg / 764.0 g
7.5 N
|
| 10 mm | Stal (~0.2) |
0.19 kg / 190.0 g
1.9 N
|
| 15 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 20x18 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.96 kg / 3957.0 g
38.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.64 kg / 2638.0 g
25.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.32 kg / 1319.0 g
12.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
6.60 kg / 6595.0 g
64.7 N
|
MW 20x18 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.66 kg / 659.5 g
6.5 N
|
| 1 mm |
|
1.65 kg / 1648.8 g
16.2 N
|
| 2 mm |
|
3.30 kg / 3297.5 g
32.3 N
|
| 5 mm |
|
8.24 kg / 8243.8 g
80.9 N
|
| 10 mm |
|
13.19 kg / 13190.0 g
129.4 N
|
MW 20x18 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
13.19 kg / 13190.0 g
129.4 N
|
OK |
| 40 °C | -2.2% |
12.90 kg / 12899.8 g
126.5 N
|
OK |
| 60 °C | -4.4% |
12.61 kg / 12609.6 g
123.7 N
|
OK |
| 80 °C | -6.6% |
12.32 kg / 12319.5 g
120.9 N
|
|
| 100 °C | -28.8% |
9.39 kg / 9391.3 g
92.1 N
|
MW 20x18 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
56.78 kg / 56776 g
557.0 N
5 968 Gs
|
N/A |
| 1 mm |
51.26 kg / 51260 g
502.9 N
10 289 Gs
|
46.13 kg / 46134 g
452.6 N
~0 Gs
|
| 2 mm |
45.93 kg / 45927 g
450.5 N
9 739 Gs
|
41.33 kg / 41334 g
405.5 N
~0 Gs
|
| 3 mm |
40.93 kg / 40932 g
401.5 N
9 194 Gs
|
36.84 kg / 36839 g
361.4 N
~0 Gs
|
| 5 mm |
32.06 kg / 32062 g
314.5 N
8 137 Gs
|
28.86 kg / 28855 g
283.1 N
~0 Gs
|
| 10 mm |
16.44 kg / 16436 g
161.2 N
5 826 Gs
|
14.79 kg / 14792 g
145.1 N
~0 Gs
|
| 20 mm |
4.10 kg / 4099 g
40.2 N
2 909 Gs
|
3.69 kg / 3689 g
36.2 N
~0 Gs
|
| 50 mm |
0.15 kg / 154 g
1.5 N
565 Gs
|
0.14 kg / 139 g
1.4 N
~0 Gs
|
MW 20x18 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 12.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 6.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
MW 20x18 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.57 km/h
(5.16 m/s)
|
0.56 J | |
| 30 mm |
30.83 km/h
(8.56 m/s)
|
1.56 J | |
| 50 mm |
39.77 km/h
(11.05 m/s)
|
2.59 J | |
| 100 mm |
56.24 km/h
(15.62 m/s)
|
5.18 J |
MW 20x18 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 20x18 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 17 374 Mx | 173.7 µWb |
| Współczynnik Pc | 0.85 | Wysoki (Stabilny) |
MW 20x18 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 13.19 kg | Standard |
| Woda (dno rzeki) |
15.10 kg
(+1.91 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ok. 20-30% siły prostopadłej.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.85
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
UMP 75x25 [M10x3] GW F200 PLATINIUM Lina / N52 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Zalety
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- z użyciem blachy ze stali niskowęglowej, działającej jako idealny przewodnik strumienia
- o przekroju nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Masywność podłoża – zbyt cienka stal nie zamyka strumienia, przez co część strumienia ucieka w powietrzu.
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Nie zbliżaj do komputera
Nie zbliżaj magnesów do portfela, laptopa czy ekranu. Magnes może trwale uszkodzić te urządzenia oraz skasować dane z kart.
Trwała utrata siły
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Chronić przed dziećmi
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Świadome użytkowanie
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Rozruszniki serca
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie czujników w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby nie uszkodzić czujników.
Ochrona dłoni
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Alergia na nikiel
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Kruchość materiału
Mimo niklowej powłoki, neodym jest delikatny i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się pokruszyć na drobiny.
