MW 14x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010391
GTIN/EAN: 5906301811084
Średnica Ø
14 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
11.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.71 kg / 65.83 N
Indukcja magnetyczna
507.48 mT / 5075 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie zostaw wiadomość przez
formularz zgłoszeniowy
w sekcji kontakt.
Właściwości i formę magnesu neodymowego obliczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane produktu - MW 14x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 14x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010391 |
| GTIN/EAN | 5906301811084 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 11.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.71 kg / 65.83 N |
| Indukcja magnetyczna ~ ? | 507.48 mT / 5075 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe dane stanowią wynik analizy matematycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 14x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5072 Gs
507.2 mT
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
uwaga |
| 1 mm |
4354 Gs
435.4 mT
|
4.94 kg / 10.90 lbs
4944.4 g / 48.5 N
|
uwaga |
| 2 mm |
3652 Gs
365.2 mT
|
3.48 kg / 7.67 lbs
3479.0 g / 34.1 N
|
uwaga |
| 3 mm |
3017 Gs
301.7 mT
|
2.37 kg / 5.23 lbs
2373.5 g / 23.3 N
|
uwaga |
| 5 mm |
2015 Gs
201.5 mT
|
1.06 kg / 2.33 lbs
1058.7 g / 10.4 N
|
bezpieczny |
| 10 mm |
773 Gs
77.3 mT
|
0.16 kg / 0.34 lbs
155.7 g / 1.5 N
|
bezpieczny |
| 15 mm |
352 Gs
35.2 mT
|
0.03 kg / 0.07 lbs
32.3 g / 0.3 N
|
bezpieczny |
| 20 mm |
186 Gs
18.6 mT
|
0.01 kg / 0.02 lbs
9.0 g / 0.1 N
|
bezpieczny |
| 30 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
bezpieczny |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 14x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.34 kg / 2.96 lbs
1342.0 g / 13.2 N
|
| 1 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 2 mm | Stal (~0.2) |
0.70 kg / 1.53 lbs
696.0 g / 6.8 N
|
| 3 mm | Stal (~0.2) |
0.47 kg / 1.04 lbs
474.0 g / 4.6 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
212.0 g / 2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 14x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.01 kg / 4.44 lbs
2013.0 g / 19.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.34 kg / 2.96 lbs
1342.0 g / 13.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 1.48 lbs
671.0 g / 6.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.36 kg / 7.40 lbs
3355.0 g / 32.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 14x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 1.48 lbs
671.0 g / 6.6 N
|
| 1 mm |
|
1.68 kg / 3.70 lbs
1677.5 g / 16.5 N
|
| 2 mm |
|
3.36 kg / 7.40 lbs
3355.0 g / 32.9 N
|
| 3 mm |
|
5.03 kg / 11.09 lbs
5032.5 g / 49.4 N
|
| 5 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 10 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 11 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
| 12 mm |
|
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 14x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.71 kg / 14.79 lbs
6710.0 g / 65.8 N
|
OK |
| 40 °C | -2.2% |
6.56 kg / 14.47 lbs
6562.4 g / 64.4 N
|
OK |
| 60 °C | -4.4% |
6.41 kg / 14.14 lbs
6414.8 g / 62.9 N
|
OK |
| 80 °C | -6.6% |
6.27 kg / 13.82 lbs
6267.1 g / 61.5 N
|
|
| 100 °C | -28.8% |
4.78 kg / 10.53 lbs
4777.5 g / 46.9 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 14x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
24.41 kg / 53.82 lbs
5 843 Gs
|
3.66 kg / 8.07 lbs
3662 g / 35.9 N
|
N/A |
| 1 mm |
21.12 kg / 46.55 lbs
9 434 Gs
|
3.17 kg / 6.98 lbs
3167 g / 31.1 N
|
19.00 kg / 41.90 lbs
~0 Gs
|
| 2 mm |
17.99 kg / 39.66 lbs
8 708 Gs
|
2.70 kg / 5.95 lbs
2699 g / 26.5 N
|
16.19 kg / 35.70 lbs
~0 Gs
|
| 3 mm |
15.16 kg / 33.43 lbs
7 994 Gs
|
2.27 kg / 5.01 lbs
2274 g / 22.3 N
|
13.65 kg / 30.08 lbs
~0 Gs
|
| 5 mm |
10.49 kg / 23.12 lbs
6 649 Gs
|
1.57 kg / 3.47 lbs
1573 g / 15.4 N
|
9.44 kg / 20.81 lbs
~0 Gs
|
| 10 mm |
3.85 kg / 8.49 lbs
4 029 Gs
|
0.58 kg / 1.27 lbs
578 g / 5.7 N
|
3.47 kg / 7.64 lbs
~0 Gs
|
| 20 mm |
0.57 kg / 1.25 lbs
1 545 Gs
|
0.08 kg / 0.19 lbs
85 g / 0.8 N
|
0.51 kg / 1.12 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
218 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
139 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
93 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 14x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MW 14x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.66 km/h
(6.85 m/s)
|
0.27 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.79 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.32 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.63 J |
Tabela 9: Odporność na korozję
MW 14x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 14x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 886 Mx | 78.9 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 14x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.71 kg | Standard |
| Woda (dno rzeki) |
7.68 kg
(+0.97 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im elegancki i gładki charakter.
- Wytwarzają skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o przekroju przynajmniej 10 mm
- o wypolerowanej powierzchni kontaktu
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość stali – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia jest tracona na drugą stronę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono z wykorzystaniem wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Bezpieczny dystans
Nie przykładaj magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Produkt nie dla dzieci
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Limity termiczne
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Zasady obsługi
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Ryzyko uczulenia
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Interferencja medyczna
Dla posiadaczy implantów: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Ochrona dłoni
Bloki magnetyczne mogą połamać palce błyskawicznie. Nigdy wkładaj dłoni między dwa przyciągające się elementy.
Kompas i GPS
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i nawigacji.
Zagrożenie wybuchem pyłu
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.
