MW 14x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010391
GTIN/EAN: 5906301811084
Średnica Ø
14 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
11.55 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.71 kg / 65.83 N
Indukcja magnetyczna
507.48 mT / 5075 Gs
Powłoka
[NiCuNi] nikiel
6.84 ZŁ z VAT / szt. + cena za transport
5.56 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Dzwoń do nas
+48 22 499 98 98
lub napisz przez
formularz zapytania
na stronie kontakt.
Właściwości oraz kształt magnesów testujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MW 14x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 14x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010391 |
| GTIN/EAN | 5906301811084 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 14 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 11.55 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.71 kg / 65.83 N |
| Indukcja magnetyczna ~ ? | 507.48 mT / 5075 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie inżynierska magnesu neodymowego - raport
Poniższe wartości są rezultat kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MW 14x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5072 Gs
507.2 mT
|
6.71 kg / 6710.0 g
65.8 N
|
uwaga |
| 1 mm |
4354 Gs
435.4 mT
|
4.94 kg / 4944.4 g
48.5 N
|
uwaga |
| 2 mm |
3652 Gs
365.2 mT
|
3.48 kg / 3479.0 g
34.1 N
|
uwaga |
| 3 mm |
3017 Gs
301.7 mT
|
2.37 kg / 2373.5 g
23.3 N
|
uwaga |
| 5 mm |
2015 Gs
201.5 mT
|
1.06 kg / 1058.7 g
10.4 N
|
niskie ryzyko |
| 10 mm |
773 Gs
77.3 mT
|
0.16 kg / 155.7 g
1.5 N
|
niskie ryzyko |
| 15 mm |
352 Gs
35.2 mT
|
0.03 kg / 32.3 g
0.3 N
|
niskie ryzyko |
| 20 mm |
186 Gs
18.6 mT
|
0.01 kg / 9.0 g
0.1 N
|
niskie ryzyko |
| 30 mm |
69 Gs
6.9 mT
|
0.00 kg / 1.3 g
0.0 N
|
niskie ryzyko |
| 50 mm |
18 Gs
1.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
MW 14x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.34 kg / 1342.0 g
13.2 N
|
| 1 mm | Stal (~0.2) |
0.99 kg / 988.0 g
9.7 N
|
| 2 mm | Stal (~0.2) |
0.70 kg / 696.0 g
6.8 N
|
| 3 mm | Stal (~0.2) |
0.47 kg / 474.0 g
4.6 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 212.0 g
2.1 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 32.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 14x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.01 kg / 2013.0 g
19.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.34 kg / 1342.0 g
13.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.67 kg / 671.0 g
6.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.36 kg / 3355.0 g
32.9 N
|
MW 14x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.67 kg / 671.0 g
6.6 N
|
| 1 mm |
|
1.68 kg / 1677.5 g
16.5 N
|
| 2 mm |
|
3.36 kg / 3355.0 g
32.9 N
|
| 5 mm |
|
6.71 kg / 6710.0 g
65.8 N
|
| 10 mm |
|
6.71 kg / 6710.0 g
65.8 N
|
MW 14x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.71 kg / 6710.0 g
65.8 N
|
OK |
| 40 °C | -2.2% |
6.56 kg / 6562.4 g
64.4 N
|
OK |
| 60 °C | -4.4% |
6.41 kg / 6414.8 g
62.9 N
|
OK |
| 80 °C | -6.6% |
6.27 kg / 6267.1 g
61.5 N
|
|
| 100 °C | -28.8% |
4.78 kg / 4777.5 g
46.9 N
|
MW 14x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
24.41 kg / 24414 g
239.5 N
5 843 Gs
|
N/A |
| 1 mm |
21.12 kg / 21116 g
207.1 N
9 434 Gs
|
19.00 kg / 19004 g
186.4 N
~0 Gs
|
| 2 mm |
17.99 kg / 17990 g
176.5 N
8 708 Gs
|
16.19 kg / 16191 g
158.8 N
~0 Gs
|
| 3 mm |
15.16 kg / 15161 g
148.7 N
7 994 Gs
|
13.65 kg / 13645 g
133.9 N
~0 Gs
|
| 5 mm |
10.49 kg / 10487 g
102.9 N
6 649 Gs
|
9.44 kg / 9439 g
92.6 N
~0 Gs
|
| 10 mm |
3.85 kg / 3852 g
37.8 N
4 029 Gs
|
3.47 kg / 3467 g
34.0 N
~0 Gs
|
| 20 mm |
0.57 kg / 567 g
5.6 N
1 545 Gs
|
0.51 kg / 510 g
5.0 N
~0 Gs
|
| 50 mm |
0.01 kg / 11 g
0.1 N
218 Gs
|
0.01 kg / 10 g
0.1 N
~0 Gs
|
MW 14x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 14x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.66 km/h
(6.85 m/s)
|
0.27 J | |
| 30 mm |
42.11 km/h
(11.70 m/s)
|
0.79 J | |
| 50 mm |
54.36 km/h
(15.10 m/s)
|
1.32 J | |
| 100 mm |
76.87 km/h
(21.35 m/s)
|
2.63 J |
MW 14x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 14x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 886 Mx | 78.9 µWb |
| Współczynnik Pc | 0.74 | Wysoki (Stabilny) |
MW 14x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.71 kg | Standard |
| Woda (dno rzeki) |
7.68 kg
(+0.97 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Ostrzeżenie dla sercowców
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.
Dla uczulonych
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Karty i dyski
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.
Świadome użytkowanie
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Przegrzanie magnesu
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Samozapłon
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Łamliwość magnesów
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
