magnesy neodymowe

Czym są neodymowe magnesy? Magnesy neodymowe znajdujące się aktualnie na stanie magazynowym można sprawdzić na spisie poniżej sprawdź cennik magnesów

uchwyt z magnesem dla poszukiwaczy F 550 BlackSiver z mocnym uchem bocznym i liną

Gdzie kupić bardzo mocny UM magnes neodymowy do poszukiwań? Uchwyty z magnesów w szczelnej, solidnej obudowie ze stali doskonale się nadają do użytkowania w niedogodnych, ciężkich warunkach klimatycznych, na przykład w deszczu i podczas śniegu sprawdź

magnesy z uchwytem

Uchwyty magnetyczne mogą być stosowane do usprawnienia procesów produkcyjnych, eksploracji wody lub do poszukiwania skał kosmicznych z kruszcu. Mocowania to śruba 3x [M10] duża siła sprawdź ofertę...

Ciesz się wysyłką zamówienia w dzień zlecenia jeśli zlecenie złożone jest przed 14:00 w dni pracujące.

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 14x10 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010391

GTIN/EAN: 5906301811084

5.00

Średnica Ø

14 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

11.55 g

Kierunek magnesowania

↑ osiowy

Udźwig

6.71 kg / 65.83 N

Indukcja magnetyczna

507.48 mT / 5075 Gs

Powłoka

[NiCuNi] nikiel

6.84 z VAT / szt. + cena za transport

5.56 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
5.56 ZŁ
6.84 ZŁ
cena od 150 szt.
5.23 ZŁ
6.43 ZŁ
cena od 450 szt.
4.89 ZŁ
6.02 ZŁ
Nie jesteś pewien wyboru?

Dzwoń do nas +48 22 499 98 98 lub napisz przez formularz zapytania na stronie kontakt.
Właściwości oraz kształt magnesów testujesz dzięki naszemu narzędziu online do obliczeń.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

MW 14x10 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka MW 14x10 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010391
GTIN/EAN 5906301811084
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 14 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 11.55 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 6.71 kg / 65.83 N
Indukcja magnetyczna ~ ? 507.48 mT / 5075 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 14x10 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Modelowanie inżynierska magnesu neodymowego - raport

Poniższe wartości są rezultat kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 14x10 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 5072 Gs
507.2 mT
6.71 kg / 6710.0 g
65.8 N
uwaga
1 mm 4354 Gs
435.4 mT
4.94 kg / 4944.4 g
48.5 N
uwaga
2 mm 3652 Gs
365.2 mT
3.48 kg / 3479.0 g
34.1 N
uwaga
3 mm 3017 Gs
301.7 mT
2.37 kg / 2373.5 g
23.3 N
uwaga
5 mm 2015 Gs
201.5 mT
1.06 kg / 1058.7 g
10.4 N
niskie ryzyko
10 mm 773 Gs
77.3 mT
0.16 kg / 155.7 g
1.5 N
niskie ryzyko
15 mm 352 Gs
35.2 mT
0.03 kg / 32.3 g
0.3 N
niskie ryzyko
20 mm 186 Gs
18.6 mT
0.01 kg / 9.0 g
0.1 N
niskie ryzyko
30 mm 69 Gs
6.9 mT
0.00 kg / 1.3 g
0.0 N
niskie ryzyko
50 mm 18 Gs
1.8 mT
0.00 kg / 0.1 g
0.0 N
niskie ryzyko
Tabela 2: Równoległa siła obsunięcia (ściana)
MW 14x10 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 1.34 kg / 1342.0 g
13.2 N
1 mm Stal (~0.2) 0.99 kg / 988.0 g
9.7 N
2 mm Stal (~0.2) 0.70 kg / 696.0 g
6.8 N
3 mm Stal (~0.2) 0.47 kg / 474.0 g
4.6 N
5 mm Stal (~0.2) 0.21 kg / 212.0 g
2.1 N
10 mm Stal (~0.2) 0.03 kg / 32.0 g
0.3 N
15 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
20 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 14x10 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
2.01 kg / 2013.0 g
19.7 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
1.34 kg / 1342.0 g
13.2 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.67 kg / 671.0 g
6.6 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
3.36 kg / 3355.0 g
32.9 N
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 14x10 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.67 kg / 671.0 g
6.6 N
1 mm
25%
1.68 kg / 1677.5 g
16.5 N
2 mm
50%
3.36 kg / 3355.0 g
32.9 N
5 mm
100%
6.71 kg / 6710.0 g
65.8 N
10 mm
100%
6.71 kg / 6710.0 g
65.8 N
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MW 14x10 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 6.71 kg / 6710.0 g
65.8 N
OK
40 °C -2.2% 6.56 kg / 6562.4 g
64.4 N
OK
60 °C -4.4% 6.41 kg / 6414.8 g
62.9 N
OK
80 °C -6.6% 6.27 kg / 6267.1 g
61.5 N
100 °C -28.8% 4.78 kg / 4777.5 g
46.9 N
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 14x10 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 24.41 kg / 24414 g
239.5 N
5 843 Gs
N/A
1 mm 21.12 kg / 21116 g
207.1 N
9 434 Gs
19.00 kg / 19004 g
186.4 N
~0 Gs
2 mm 17.99 kg / 17990 g
176.5 N
8 708 Gs
16.19 kg / 16191 g
158.8 N
~0 Gs
3 mm 15.16 kg / 15161 g
148.7 N
7 994 Gs
13.65 kg / 13645 g
133.9 N
~0 Gs
5 mm 10.49 kg / 10487 g
102.9 N
6 649 Gs
9.44 kg / 9439 g
92.6 N
~0 Gs
10 mm 3.85 kg / 3852 g
37.8 N
4 029 Gs
3.47 kg / 3467 g
34.0 N
~0 Gs
20 mm 0.57 kg / 567 g
5.6 N
1 545 Gs
0.51 kg / 510 g
5.0 N
~0 Gs
50 mm 0.01 kg / 11 g
0.1 N
218 Gs
0.01 kg / 10 g
0.1 N
~0 Gs
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 14x10 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 8.0 cm
Implant słuchowy 10 Gs (1.0 mT) 6.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 5.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 4.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 3.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.5 cm
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 14x10 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 24.66 km/h
(6.85 m/s)
0.27 J
30 mm 42.11 km/h
(11.70 m/s)
0.79 J
50 mm 54.36 km/h
(15.10 m/s)
1.32 J
100 mm 76.87 km/h
(21.35 m/s)
2.63 J
Tabela 9: Specyfikacja ochrony powierzchni
MW 14x10 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Tabela 10: Dane elektryczne (Flux)
MW 14x10 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 7 886 Mx 78.9 µWb
Współczynnik Pc 0.74 Wysoki (Stabilny)
Tabela 11: Fizyka poszukiwań podwodnych
MW 14x10 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 6.71 kg Standard
Woda (dno rzeki) 7.68 kg
(+0.97 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Udźwig w pionie

*Uwaga: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły prostopadłej.

2. Efektywność, a grubość stali

*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.

3. Stabilność termiczna

*Dla standardowych magnesów krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.74

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010391-2025
Przelicznik magnesów
Udźwig magnesu

Pole magnetyczne

Zobacz też inne propozycje

Prezentowany produkt to niezwykle mocny magnes w kształcie walca, wyprodukowany z nowoczesnego materiału NdFeB, co przy wymiarach Ø14x10 mm gwarantuje najwyższą gęstość energii. Model MW 14x10 / N38 cechuje się tolerancją ±0,1mm oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie idealne dla najbardziej wymagających inżynierów i konstruktorów. Jako walec magnetyczny o dużej sile (ok. 6.71 kg), produkt ten jest dostępny natychmiast z naszego polskiego centrum logistycznego, co zapewnia błyskawiczną realizację zamówienia. Ponadto, jego powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, zapewniając estetyczny wygląd i trwałość przez lata.
Ten model jest idealny do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki sile przyciągania 65.83 N przy wadze zaledwie 11.55 g, ten walec jest niezastąpiony w elektronice oraz wszędzie tam, gdzie liczy się każdy gram.
Ze względu na delikatną strukturę spieku ceramicznego, nie wolno stosować wbijania magnesów na siłę (tzw. montaż na wcisk), gdyż grozi to natychmiastowym pęknięciem tego profesjonalnego komponentu. Dla zapewnienia stabilności w automatyce, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując wysoką powtarzalność połączenia.
Magnesy NdFeB klasy N38 są odpowiednie do większości zastosowań w modelarstwie i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø14x10), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø14x10 mm, co przy wadze 11.55 g czyni go elementem o imponującej gęstości energii magnetycznej. Kluczowym parametrem jest tutaj udźwig wynoszący około 6.71 kg (siła ~65.83 N), co przy tak kompaktowych wymiarach świadczy o wysokiej klasie materiału NdFeB. Produkt posiada powłokę [NiCuNi], która zabezpiecza go przed utlenianiem, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 10 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Dzięki temu magnes można łatwo wkleić w otwór i uzyskać silne pole na powierzchni czołowej. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Zalety i wady magnesów z neodymu Nd2Fe14B.

Zalety
Poza ponadprzeciętną siłą, nasze magnesy wnoszą dodatkowe korzyści::
  • Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
  • Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
  • Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
  • Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
  • Szerokie możliwości w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Znajdują powszechne zastosowanie w przemyśle high-tech – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
  • Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
  • Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.

Charakterystyka udźwigu

Maksymalna siła przyciągania magnesuco ma na to wpływ?
Moc magnesu to rezultat pomiaru dla optymalnej konfiguracji, zakładającej:
  • na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej pole magnetyczne
  • o grubości wynoszącej minimum 10 mm
  • charakteryzującej się gładkością
  • bez żadnej warstwy izolującej pomiędzy magnesem a stalą
  • przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
  • w stabilnej temperaturze pokojowej
Co wpływa na udźwig w praktyce
Należy pamiętać, że trzymanie magnesu może być niższe zależnie od następujących czynników, w kolejności ważności:
  • Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
  • Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
  • Gładkość podłoża – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Nierówności tworzą dystans powietrzny.
  • Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).

Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.

Bezpieczna praca przy magnesach neodymowych
Zakłócenia GPS i telefonów

Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.

Ostrzeżenie dla sercowców

Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić działanie urządzenia ratującego życie.

Dla uczulonych

Informacja alergiczna: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.

Karty i dyski

Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Utrzymuj odległość min. 10 cm.

Świadome użytkowanie

Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.

Przegrzanie magnesu

Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.

Samozapłon

Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.

Tylko dla dorosłych

Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.

Poważne obrażenia

Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!

Łamliwość magnesów

Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.

Bezpieczeństwo! Szukasz szczegółów? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98