MW 18.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010036
GTIN/EAN: 5906301810353
Średnica Ø
18.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
21.04 g
Kierunek magnesowania
→ diametralny
Udźwig
11.68 kg / 114.54 N
Indukcja magnetyczna
450.35 mT / 4503 Gs
Powłoka
[NiCuNi] nikiel
11.07 ZŁ z VAT / szt. + cena za transport
9.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
alternatywnie napisz korzystając z
formularz kontaktowy
przez naszą stronę.
Właściwości a także budowę magnesów skontrolujesz u nas w
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Szczegółowa specyfikacja MW 18.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010036 |
| GTIN/EAN | 5906301810353 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 21.04 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 11.68 kg / 114.54 N |
| Indukcja magnetyczna ~ ? | 450.35 mT / 4503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - dane
Przedstawione wartości są rezultat kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 18.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4502 Gs
450.2 mT
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
miażdżący |
| 1 mm |
4050 Gs
405.0 mT
|
9.46 kg / 20.85 lbs
9455.2 g / 92.8 N
|
mocny |
| 2 mm |
3587 Gs
358.7 mT
|
7.42 kg / 16.35 lbs
7416.3 g / 72.8 N
|
mocny |
| 3 mm |
3139 Gs
313.9 mT
|
5.68 kg / 12.52 lbs
5678.8 g / 55.7 N
|
mocny |
| 5 mm |
2346 Gs
234.6 mT
|
3.17 kg / 6.99 lbs
3172.5 g / 31.1 N
|
mocny |
| 10 mm |
1100 Gs
110.0 mT
|
0.70 kg / 1.54 lbs
696.7 g / 6.8 N
|
bezpieczny |
| 15 mm |
554 Gs
55.4 mT
|
0.18 kg / 0.39 lbs
176.7 g / 1.7 N
|
bezpieczny |
| 20 mm |
308 Gs
30.8 mT
|
0.05 kg / 0.12 lbs
54.6 g / 0.5 N
|
bezpieczny |
| 30 mm |
120 Gs
12.0 mT
|
0.01 kg / 0.02 lbs
8.3 g / 0.1 N
|
bezpieczny |
| 50 mm |
32 Gs
3.2 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 18.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.34 kg / 5.15 lbs
2336.0 g / 22.9 N
|
| 1 mm | Stal (~0.2) |
1.89 kg / 4.17 lbs
1892.0 g / 18.6 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 3.27 lbs
1484.0 g / 14.6 N
|
| 3 mm | Stal (~0.2) |
1.14 kg / 2.50 lbs
1136.0 g / 11.1 N
|
| 5 mm | Stal (~0.2) |
0.63 kg / 1.40 lbs
634.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 18.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.50 kg / 7.72 lbs
3504.0 g / 34.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.34 kg / 5.15 lbs
2336.0 g / 22.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1168.0 g / 11.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.84 kg / 12.87 lbs
5840.0 g / 57.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 18.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 1.29 lbs
584.0 g / 5.7 N
|
| 1 mm |
|
1.46 kg / 3.22 lbs
1460.0 g / 14.3 N
|
| 2 mm |
|
2.92 kg / 6.44 lbs
2920.0 g / 28.6 N
|
| 3 mm |
|
4.38 kg / 9.66 lbs
4380.0 g / 43.0 N
|
| 5 mm |
|
7.30 kg / 16.09 lbs
7300.0 g / 71.6 N
|
| 10 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
| 11 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
| 12 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 18.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
OK |
| 40 °C | -2.2% |
11.42 kg / 25.18 lbs
11423.0 g / 112.1 N
|
OK |
| 60 °C | -4.4% |
11.17 kg / 24.62 lbs
11166.1 g / 109.5 N
|
OK |
| 80 °C | -6.6% |
10.91 kg / 24.05 lbs
10909.1 g / 107.0 N
|
|
| 100 °C | -28.8% |
8.32 kg / 18.33 lbs
8316.2 g / 81.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MW 18.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
35.05 kg / 77.28 lbs
5 600 Gs
|
5.26 kg / 11.59 lbs
5258 g / 51.6 N
|
N/A |
| 1 mm |
31.70 kg / 69.88 lbs
8 562 Gs
|
4.75 kg / 10.48 lbs
4754 g / 46.6 N
|
28.53 kg / 62.89 lbs
~0 Gs
|
| 2 mm |
28.38 kg / 62.56 lbs
8 101 Gs
|
4.26 kg / 9.38 lbs
4256 g / 41.8 N
|
25.54 kg / 56.30 lbs
~0 Gs
|
| 3 mm |
25.22 kg / 55.59 lbs
7 636 Gs
|
3.78 kg / 8.34 lbs
3782 g / 37.1 N
|
22.69 kg / 50.03 lbs
~0 Gs
|
| 5 mm |
19.53 kg / 43.05 lbs
6 720 Gs
|
2.93 kg / 6.46 lbs
2929 g / 28.7 N
|
17.57 kg / 38.75 lbs
~0 Gs
|
| 10 mm |
9.52 kg / 20.99 lbs
4 692 Gs
|
1.43 kg / 3.15 lbs
1428 g / 14.0 N
|
8.57 kg / 18.89 lbs
~0 Gs
|
| 20 mm |
2.09 kg / 4.61 lbs
2 199 Gs
|
0.31 kg / 0.69 lbs
314 g / 3.1 N
|
1.88 kg / 4.15 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
372 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
241 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
164 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
116 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 18.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MW 18.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.63 km/h
(6.84 m/s)
|
0.49 J | |
| 30 mm |
41.18 km/h
(11.44 m/s)
|
1.38 J | |
| 50 mm |
53.13 km/h
(14.76 m/s)
|
2.29 J | |
| 100 mm |
75.14 km/h
(20.87 m/s)
|
4.58 J |
Tabela 9: Parametry powłoki (trwałość)
MW 18.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 18.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 18.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.68 kg | Standard |
| Woda (dno rzeki) |
13.37 kg
(+1.69 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (wg testów).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Minusy
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej pole magnetyczne
- której wymiar poprzeczny to min. 10 mm
- z płaszczyzną wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Kluczowe elementy wpływające na udźwig
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek działania siły – maksymalny parametr mamy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Ostrzeżenia
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Siła neodymu
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet profesjonalistów. Zachowaj czujność i respektuj ich siły.
Łamliwość magnesów
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Ryzyko połknięcia
Koniecznie chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Limity termiczne
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Ryzyko pożaru
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
Rozruszniki serca
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zatrzymać pracę implantu.
Niklowa powłoka a alergia
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Zagrożenie dla elektroniki
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
