MW 18.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010036
GTIN/EAN: 5906301810353
Średnica Ø
18.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
21.04 g
Kierunek magnesowania
→ diametralny
Udźwig
11.68 kg / 114.54 N
Indukcja magnetyczna
450.35 mT / 4503 Gs
Powłoka
[NiCuNi] nikiel
11.07 ZŁ z VAT / szt. + cena za transport
9.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
formularz
na stronie kontakt.
Siłę oraz wygląd elementów magnetycznych testujesz u nas w
kalkulatorze siły.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MW 18.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 18.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010036 |
| GTIN/EAN | 5906301810353 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 21.04 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 11.68 kg / 114.54 N |
| Indukcja magnetyczna ~ ? | 450.35 mT / 4503 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - parametry techniczne
Poniższe dane są bezpośredni efekt analizy matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MW 18.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4502 Gs
450.2 mT
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
krytyczny poziom |
| 1 mm |
4050 Gs
405.0 mT
|
9.46 kg / 20.85 lbs
9455.2 g / 92.8 N
|
uwaga |
| 2 mm |
3587 Gs
358.7 mT
|
7.42 kg / 16.35 lbs
7416.3 g / 72.8 N
|
uwaga |
| 3 mm |
3139 Gs
313.9 mT
|
5.68 kg / 12.52 lbs
5678.8 g / 55.7 N
|
uwaga |
| 5 mm |
2346 Gs
234.6 mT
|
3.17 kg / 6.99 lbs
3172.5 g / 31.1 N
|
uwaga |
| 10 mm |
1100 Gs
110.0 mT
|
0.70 kg / 1.54 lbs
696.7 g / 6.8 N
|
bezpieczny |
| 15 mm |
554 Gs
55.4 mT
|
0.18 kg / 0.39 lbs
176.7 g / 1.7 N
|
bezpieczny |
| 20 mm |
308 Gs
30.8 mT
|
0.05 kg / 0.12 lbs
54.6 g / 0.5 N
|
bezpieczny |
| 30 mm |
120 Gs
12.0 mT
|
0.01 kg / 0.02 lbs
8.3 g / 0.1 N
|
bezpieczny |
| 50 mm |
32 Gs
3.2 mT
|
0.00 kg / 0.00 lbs
0.6 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MW 18.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.34 kg / 5.15 lbs
2336.0 g / 22.9 N
|
| 1 mm | Stal (~0.2) |
1.89 kg / 4.17 lbs
1892.0 g / 18.6 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 3.27 lbs
1484.0 g / 14.6 N
|
| 3 mm | Stal (~0.2) |
1.14 kg / 2.50 lbs
1136.0 g / 11.1 N
|
| 5 mm | Stal (~0.2) |
0.63 kg / 1.40 lbs
634.0 g / 6.2 N
|
| 10 mm | Stal (~0.2) |
0.14 kg / 0.31 lbs
140.0 g / 1.4 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 18.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.50 kg / 7.72 lbs
3504.0 g / 34.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.34 kg / 5.15 lbs
2336.0 g / 22.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.17 kg / 2.57 lbs
1168.0 g / 11.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.84 kg / 12.87 lbs
5840.0 g / 57.3 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MW 18.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 1.29 lbs
584.0 g / 5.7 N
|
| 1 mm |
|
1.46 kg / 3.22 lbs
1460.0 g / 14.3 N
|
| 2 mm |
|
2.92 kg / 6.44 lbs
2920.0 g / 28.6 N
|
| 3 mm |
|
4.38 kg / 9.66 lbs
4380.0 g / 43.0 N
|
| 5 mm |
|
7.30 kg / 16.09 lbs
7300.0 g / 71.6 N
|
| 10 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
| 11 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
| 12 mm |
|
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MW 18.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.68 kg / 25.75 lbs
11680.0 g / 114.6 N
|
OK |
| 40 °C | -2.2% |
11.42 kg / 25.18 lbs
11423.0 g / 112.1 N
|
OK |
| 60 °C | -4.4% |
11.17 kg / 24.62 lbs
11166.1 g / 109.5 N
|
OK |
| 80 °C | -6.6% |
10.91 kg / 24.05 lbs
10909.1 g / 107.0 N
|
|
| 100 °C | -28.8% |
8.32 kg / 18.33 lbs
8316.2 g / 81.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MW 18.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
35.05 kg / 77.28 lbs
5 600 Gs
|
5.26 kg / 11.59 lbs
5258 g / 51.6 N
|
N/A |
| 1 mm |
31.70 kg / 69.88 lbs
8 562 Gs
|
4.75 kg / 10.48 lbs
4754 g / 46.6 N
|
28.53 kg / 62.89 lbs
~0 Gs
|
| 2 mm |
28.38 kg / 62.56 lbs
8 101 Gs
|
4.26 kg / 9.38 lbs
4256 g / 41.8 N
|
25.54 kg / 56.30 lbs
~0 Gs
|
| 3 mm |
25.22 kg / 55.59 lbs
7 636 Gs
|
3.78 kg / 8.34 lbs
3782 g / 37.1 N
|
22.69 kg / 50.03 lbs
~0 Gs
|
| 5 mm |
19.53 kg / 43.05 lbs
6 720 Gs
|
2.93 kg / 6.46 lbs
2929 g / 28.7 N
|
17.57 kg / 38.75 lbs
~0 Gs
|
| 10 mm |
9.52 kg / 20.99 lbs
4 692 Gs
|
1.43 kg / 3.15 lbs
1428 g / 14.0 N
|
8.57 kg / 18.89 lbs
~0 Gs
|
| 20 mm |
2.09 kg / 4.61 lbs
2 199 Gs
|
0.31 kg / 0.69 lbs
314 g / 3.1 N
|
1.88 kg / 4.15 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
372 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
241 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
164 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
116 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
86 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
65 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 18.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 18.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.63 km/h
(6.84 m/s)
|
0.49 J | |
| 30 mm |
41.18 km/h
(11.44 m/s)
|
1.38 J | |
| 50 mm |
53.13 km/h
(14.76 m/s)
|
2.29 J | |
| 100 mm |
75.14 km/h
(20.87 m/s)
|
4.58 J |
Tabela 9: Parametry powłoki (trwałość)
MW 18.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MW 18.9x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 12 775 Mx | 127.7 µWb |
| Współczynnik Pc | 0.61 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 18.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.68 kg | Standard |
| Woda (dno rzeki) |
13.37 kg
(+1.69 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.61
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Zalety
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co ułatwia ich adaptację w przemyśle.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej grubość co najmniej 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną wolną od rys
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Maksymalna temperatura
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Kompas i GPS
Ważna informacja: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
Nie wierć w magnesach
Proszek generowany podczas szlifowania magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Bezpieczna praca
Stosuj magnesy z rozwagą. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Produkt nie dla dzieci
Neodymowe magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Podatność na pękanie
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Ostrzeżenie dla alergików
Uwaga na nikiel: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
