MW 18.9x10 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010036
GTIN: 5906301810353
Średnica Ø
18.9 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
21.04 g
Kierunek magnesowania
→ diametralny
Udźwig
11.68 kg / 114.54 N
Indukcja magnetyczna
0.45 mT / 5 Gs
Powłoka
[NiCuNi] nikiel
11.07 ZŁ z VAT / szt. + cena za transport
9.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz wątpliwości?
Zadzwoń już teraz
+48 22 499 98 98
albo zostaw wiadomość przez
formularz
w sekcji kontakt.
Masę a także kształt magnesów neodymowych sprawdzisz dzięki naszemu
kalkulatorze mocy.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 18.9x10 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 18.9x10 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010036 |
| GTIN | 5906301810353 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 18.9 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 21.04 g |
| Kierunek magnesowania | → diametralny |
| Udźwig ~ ? | 11.68 kg / 114.54 N |
| Indukcja magnetyczna ~ ? | 0.45 mT / 5 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - raport
Poniższe informacje są rezultat symulacji inżynierskiej. Wyniki oparte są na modelach dla materiału NdFeB. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
MW 18.9x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4502 Gs
450.2 mT
|
11.68 kg / 11680.0 g
114.6 N
|
niebezpieczny! |
| 1 mm |
4050 Gs
405.0 mT
|
9.46 kg / 9455.2 g
92.8 N
|
uwaga |
| 2 mm |
3587 Gs
358.7 mT
|
7.42 kg / 7416.3 g
72.8 N
|
uwaga |
| 3 mm |
3139 Gs
313.9 mT
|
5.68 kg / 5678.8 g
55.7 N
|
uwaga |
| 5 mm |
2346 Gs
234.6 mT
|
3.17 kg / 3172.5 g
31.1 N
|
uwaga |
| 10 mm |
1100 Gs
110.0 mT
|
0.70 kg / 696.7 g
6.8 N
|
bezpieczny |
| 15 mm |
554 Gs
55.4 mT
|
0.18 kg / 176.7 g
1.7 N
|
bezpieczny |
| 20 mm |
308 Gs
30.8 mT
|
0.05 kg / 54.6 g
0.5 N
|
bezpieczny |
| 30 mm |
120 Gs
12.0 mT
|
0.01 kg / 8.3 g
0.1 N
|
bezpieczny |
| 50 mm |
32 Gs
3.2 mT
|
0.00 kg / 0.6 g
0.0 N
|
bezpieczny |
MW 18.9x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.34 kg / 2336.0 g
22.9 N
|
| 1 mm | Stal (~0.2) |
1.89 kg / 1892.0 g
18.6 N
|
| 2 mm | Stal (~0.2) |
1.48 kg / 1484.0 g
14.6 N
|
| 3 mm | Stal (~0.2) |
1.14 kg / 1136.0 g
11.1 N
|
| 5 mm | Stal (~0.2) |
0.63 kg / 634.0 g
6.2 N
|
| 10 mm | Stal (~0.2) |
0.14 kg / 140.0 g
1.4 N
|
| 15 mm | Stal (~0.2) |
0.04 kg / 36.0 g
0.4 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 18.9x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.50 kg / 3504.0 g
34.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.34 kg / 2336.0 g
22.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.17 kg / 1168.0 g
11.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.84 kg / 5840.0 g
57.3 N
|
MW 18.9x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.58 kg / 584.0 g
5.7 N
|
| 1 mm |
|
1.46 kg / 1460.0 g
14.3 N
|
| 2 mm |
|
2.92 kg / 2920.0 g
28.6 N
|
| 5 mm |
|
7.30 kg / 7300.0 g
71.6 N
|
| 10 mm |
|
11.68 kg / 11680.0 g
114.6 N
|
MW 18.9x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.68 kg / 11680.0 g
114.6 N
|
OK |
| 40 °C | -2.2% |
11.42 kg / 11423.0 g
112.1 N
|
OK |
| 60 °C | -4.4% |
11.17 kg / 11166.1 g
109.5 N
|
OK |
| 80 °C | -6.6% |
10.91 kg / 10909.1 g
107.0 N
|
|
| 100 °C | -28.8% |
8.32 kg / 8316.2 g
81.6 N
|
MW 18.9x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
17.52 kg / 17520.0 g
171.9 N
|
N/A |
| 2 mm |
11.13 kg / 11130.0 g
109.2 N
|
10.39 kg / 10388.0 g
101.9 N
|
| 5 mm |
4.76 kg / 4755.0 g
46.6 N
|
4.44 kg / 4438.0 g
43.5 N
|
| 10 mm |
1.05 kg / 1050.0 g
10.3 N
|
0.98 kg / 980.0 g
9.6 N
|
| 20 mm |
0.08 kg / 75.0 g
0.7 N
|
0.07 kg / 70.0 g
0.7 N
|
| 50 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
MW 18.9x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 18.9x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.63 km/h
(6.84 m/s)
|
0.49 J | |
| 30 mm |
41.18 km/h
(11.44 m/s)
|
1.38 J | |
| 50 mm |
53.13 km/h
(14.76 m/s)
|
2.29 J | |
| 100 mm |
75.14 km/h
(20.87 m/s)
|
4.58 J |
MW 18.9x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 18.9x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.68 kg | Standard |
| Woda (dno rzeki) |
13.37 kg
(+1.69 kg Zysk z wyporności)
|
+14.5% |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych NdFeB.
Warto zwrócić uwagę, że obok wysokiej siły, produkty te cechują się następującymi zaletami:
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, pamięci masowych i urządzeń ratujących życie.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Oto ograniczenia i wady, o których musisz wiedzieć:
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego zalecamy obudowy lub uchwyty.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Maksymalna moc trzymania magnesu – co się na to składa?
Siła oderwania została wyznaczona dla optymalnej konfiguracji, obejmującej:
- z zastosowaniem blachy ze miękkiej stali, która służy jako idealny przewodnik strumienia
- której wymiar poprzeczny to min. 10 mm
- z powierzchnią idealnie równą
- przy bezpośrednim styku (bez zanieczyszczeń)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w temp. ok. 20°C
Praktyczny udźwig: czynniki wpływające
Podczas codziennego użytkowania, faktyczna siła trzymania zależy od szeregu czynników, uszeregowanych od najbardziej istotnych:
- Szczelina – występowanie ciała obcego (farba, brud, szczelina) przerywa obwód magnetyczny, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Wpływ temperatury – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
* Udźwig mierzono stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 5 razy. Ponadto, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża udźwig.
Ostrzeżenia
Nie wierć w magnesach
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).
Zasady obsługi
Używaj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie życia
Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Podatność na pękanie
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Kompas i GPS
Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie kompasów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Zagrożenie dla najmłodszych
Koniecznie chroń magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Niebezpieczeństwo przytrzaśnięcia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ostrzeżenie dla alergików
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Safety First!
Potrzebujesz więcej danych? Sprawdź nasz artykuł: Czy magnesy są groźne?
