MW 15x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010030
GTIN/EAN: 5906301810292
Średnica Ø
15 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
5.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.22 kg / 41.38 N
Indukcja magnetyczna
291.60 mT / 2916 Gs
Powłoka
[NiCuNi] nikiel
1.968 ZŁ z VAT / szt. + cena za transport
1.600 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
nasz formularz online
na naszej stronie.
Siłę a także wygląd magnesu neodymowego sprawdzisz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegóły techniczne - MW 15x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010030 |
| GTIN/EAN | 5906301810292 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 5.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.22 kg / 41.38 N |
| Indukcja magnetyczna ~ ? | 291.60 mT / 2916 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe wartości stanowią rezultat kalkulacji fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MW 15x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2915 Gs
291.5 mT
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
średnie ryzyko |
| 1 mm |
2620 Gs
262.0 mT
|
3.41 kg / 7.51 lbs
3408.2 g / 33.4 N
|
średnie ryzyko |
| 2 mm |
2276 Gs
227.6 mT
|
2.57 kg / 5.67 lbs
2571.6 g / 25.2 N
|
średnie ryzyko |
| 3 mm |
1928 Gs
192.8 mT
|
1.85 kg / 4.07 lbs
1845.5 g / 18.1 N
|
bezpieczny |
| 5 mm |
1324 Gs
132.4 mT
|
0.87 kg / 1.92 lbs
870.3 g / 8.5 N
|
bezpieczny |
| 10 mm |
505 Gs
50.5 mT
|
0.13 kg / 0.28 lbs
126.7 g / 1.2 N
|
bezpieczny |
| 15 mm |
222 Gs
22.2 mT
|
0.02 kg / 0.05 lbs
24.4 g / 0.2 N
|
bezpieczny |
| 20 mm |
113 Gs
11.3 mT
|
0.01 kg / 0.01 lbs
6.3 g / 0.1 N
|
bezpieczny |
| 30 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
bezpieczny |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 15x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
844.0 g / 8.3 N
|
| 1 mm | Stal (~0.2) |
0.68 kg / 1.50 lbs
682.0 g / 6.7 N
|
| 2 mm | Stal (~0.2) |
0.51 kg / 1.13 lbs
514.0 g / 5.0 N
|
| 3 mm | Stal (~0.2) |
0.37 kg / 0.82 lbs
370.0 g / 3.6 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 15x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.84 kg / 1.86 lbs
844.0 g / 8.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 15x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| 1 mm |
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
| 2 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 3 mm |
|
3.17 kg / 6.98 lbs
3165.0 g / 31.0 N
|
| 5 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
| 10 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
| 11 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
| 12 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 15x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
OK |
| 40 °C | -2.2% |
4.13 kg / 9.10 lbs
4127.2 g / 40.5 N
|
OK |
| 60 °C | -4.4% |
4.03 kg / 8.89 lbs
4034.3 g / 39.6 N
|
|
| 80 °C | -6.6% |
3.94 kg / 8.69 lbs
3941.5 g / 38.7 N
|
|
| 100 °C | -28.8% |
3.00 kg / 6.62 lbs
3004.6 g / 29.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 15x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.26 kg / 20.41 lbs
4 518 Gs
|
1.39 kg / 3.06 lbs
1389 g / 13.6 N
|
N/A |
| 1 mm |
8.40 kg / 18.53 lbs
5 555 Gs
|
1.26 kg / 2.78 lbs
1261 g / 12.4 N
|
7.56 kg / 16.68 lbs
~0 Gs
|
| 2 mm |
7.48 kg / 16.48 lbs
5 239 Gs
|
1.12 kg / 2.47 lbs
1122 g / 11.0 N
|
6.73 kg / 14.84 lbs
~0 Gs
|
| 3 mm |
6.54 kg / 14.42 lbs
4 901 Gs
|
0.98 kg / 2.16 lbs
981 g / 9.6 N
|
5.89 kg / 12.98 lbs
~0 Gs
|
| 5 mm |
4.80 kg / 10.59 lbs
4 200 Gs
|
0.72 kg / 1.59 lbs
721 g / 7.1 N
|
4.32 kg / 9.53 lbs
~0 Gs
|
| 10 mm |
1.91 kg / 4.21 lbs
2 648 Gs
|
0.29 kg / 0.63 lbs
286 g / 2.8 N
|
1.72 kg / 3.79 lbs
~0 Gs
|
| 20 mm |
0.28 kg / 0.61 lbs
1 010 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
128 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
79 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
52 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MW 15x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.99 km/h
(8.05 m/s)
|
0.17 J | |
| 30 mm |
49.30 km/h
(13.69 m/s)
|
0.50 J | |
| 50 mm |
63.63 km/h
(17.68 m/s)
|
0.83 J | |
| 100 mm |
89.99 km/h
(25.00 m/s)
|
1.66 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 15x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MW 15x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 659 Mx | 56.6 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 15x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.22 kg | Standard |
| Woda (dno rzeki) |
4.83 kg
(+0.61 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (wg danych).
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Generują skoncentrowane pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Szerokie możliwości w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- z zastosowaniem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- której grubość sięga przynajmniej 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy całkowitym braku odstępu (bez farby)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w stabilnej temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje siłę trzymania.
BHP przy magnesach
Nie zbliżaj do komputera
Potężne oddziaływanie może usunąć informacje na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca funkcjonowanie czujników w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Nie lekceważ mocy
Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Tylko dla dorosłych
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
Ostrzeżenie dla alergików
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ostrzeżenie dla sercowców
Pacjenci z stymulatorem serca muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać pracę implantu.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Łamliwość magnesów
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
