MW 15x4 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010030
GTIN/EAN: 5906301810292
Średnica Ø
15 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
5.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.22 kg / 41.38 N
Indukcja magnetyczna
291.60 mT / 2916 Gs
Powłoka
[NiCuNi] nikiel
1.968 ZŁ z VAT / szt. + cena za transport
1.600 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
lub daj znać poprzez
formularz zapytania
w sekcji kontakt.
Moc a także formę magnesu testujesz u nas w
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Parametry produktu - MW 15x4 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x4 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010030 |
| GTIN/EAN | 5906301810292 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 5.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.22 kg / 41.38 N |
| Indukcja magnetyczna ~ ? | 291.60 mT / 2916 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione dane stanowią wynik symulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MW 15x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2915 Gs
291.5 mT
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
uwaga |
| 1 mm |
2620 Gs
262.0 mT
|
3.41 kg / 7.51 lbs
3408.2 g / 33.4 N
|
uwaga |
| 2 mm |
2276 Gs
227.6 mT
|
2.57 kg / 5.67 lbs
2571.6 g / 25.2 N
|
uwaga |
| 3 mm |
1928 Gs
192.8 mT
|
1.85 kg / 4.07 lbs
1845.5 g / 18.1 N
|
niskie ryzyko |
| 5 mm |
1324 Gs
132.4 mT
|
0.87 kg / 1.92 lbs
870.3 g / 8.5 N
|
niskie ryzyko |
| 10 mm |
505 Gs
50.5 mT
|
0.13 kg / 0.28 lbs
126.7 g / 1.2 N
|
niskie ryzyko |
| 15 mm |
222 Gs
22.2 mT
|
0.02 kg / 0.05 lbs
24.4 g / 0.2 N
|
niskie ryzyko |
| 20 mm |
113 Gs
11.3 mT
|
0.01 kg / 0.01 lbs
6.3 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
40 Gs
4.0 mT
|
0.00 kg / 0.00 lbs
0.8 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 15x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.84 kg / 1.86 lbs
844.0 g / 8.3 N
|
| 1 mm | Stal (~0.2) |
0.68 kg / 1.50 lbs
682.0 g / 6.7 N
|
| 2 mm | Stal (~0.2) |
0.51 kg / 1.13 lbs
514.0 g / 5.0 N
|
| 3 mm | Stal (~0.2) |
0.37 kg / 0.82 lbs
370.0 g / 3.6 N
|
| 5 mm | Stal (~0.2) |
0.17 kg / 0.38 lbs
174.0 g / 1.7 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
26.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 15x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.84 kg / 1.86 lbs
844.0 g / 8.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 15x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.42 kg / 0.93 lbs
422.0 g / 4.1 N
|
| 1 mm |
|
1.06 kg / 2.33 lbs
1055.0 g / 10.3 N
|
| 2 mm |
|
2.11 kg / 4.65 lbs
2110.0 g / 20.7 N
|
| 3 mm |
|
3.17 kg / 6.98 lbs
3165.0 g / 31.0 N
|
| 5 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
| 10 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
| 11 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
| 12 mm |
|
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MW 15x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.22 kg / 9.30 lbs
4220.0 g / 41.4 N
|
OK |
| 40 °C | -2.2% |
4.13 kg / 9.10 lbs
4127.2 g / 40.5 N
|
OK |
| 60 °C | -4.4% |
4.03 kg / 8.89 lbs
4034.3 g / 39.6 N
|
|
| 80 °C | -6.6% |
3.94 kg / 8.69 lbs
3941.5 g / 38.7 N
|
|
| 100 °C | -28.8% |
3.00 kg / 6.62 lbs
3004.6 g / 29.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 15x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.26 kg / 20.41 lbs
4 518 Gs
|
1.39 kg / 3.06 lbs
1389 g / 13.6 N
|
N/A |
| 1 mm |
8.40 kg / 18.53 lbs
5 555 Gs
|
1.26 kg / 2.78 lbs
1261 g / 12.4 N
|
7.56 kg / 16.68 lbs
~0 Gs
|
| 2 mm |
7.48 kg / 16.48 lbs
5 239 Gs
|
1.12 kg / 2.47 lbs
1122 g / 11.0 N
|
6.73 kg / 14.84 lbs
~0 Gs
|
| 3 mm |
6.54 kg / 14.42 lbs
4 901 Gs
|
0.98 kg / 2.16 lbs
981 g / 9.6 N
|
5.89 kg / 12.98 lbs
~0 Gs
|
| 5 mm |
4.80 kg / 10.59 lbs
4 200 Gs
|
0.72 kg / 1.59 lbs
721 g / 7.1 N
|
4.32 kg / 9.53 lbs
~0 Gs
|
| 10 mm |
1.91 kg / 4.21 lbs
2 648 Gs
|
0.29 kg / 0.63 lbs
286 g / 2.8 N
|
1.72 kg / 3.79 lbs
~0 Gs
|
| 20 mm |
0.28 kg / 0.61 lbs
1 010 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
128 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
79 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
52 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
36 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 15x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 15x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.99 km/h
(8.05 m/s)
|
0.17 J | |
| 30 mm |
49.30 km/h
(13.69 m/s)
|
0.50 J | |
| 50 mm |
63.63 km/h
(17.68 m/s)
|
0.83 J | |
| 100 mm |
89.99 km/h
(25.00 m/s)
|
1.66 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 15x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MW 15x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 659 Mx | 56.6 µWb |
| Współczynnik Pc | 0.37 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 15x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.22 kg | Standard |
| Woda (dno rzeki) |
4.83 kg
(+0.61 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.37
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i wygląda estetycznie.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od dysków twardych i silników, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze stali niskowęglowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny to min. 10 mm
- z powierzchnią oczyszczoną i gładką
- przy całkowitym braku odstępu (bez farby)
- podczas ciągnięcia w kierunku pionowym do powierzchni mocowania
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – wysoka temperatura zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.
Bezpieczna praca przy magnesach z neodymem
Zagrożenie zapłonem
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Nie dawać dzieciom
Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są dramatyczne.
Implanty kardiologiczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Nie przegrzewaj magnesów
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Ochrona urządzeń
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Niklowa powłoka a alergia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Ryzyko pęknięcia
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
