MW 10x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010003
GTIN/EAN: 5906301810001
Średnica Ø
10 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.82 kg / 8.01 N
Indukcja magnetyczna
178.06 mT / 1781 Gs
Powłoka
[NiCuNi] nikiel
0.431 ZŁ z VAT / szt. + cena za transport
0.350 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się przez
formularz kontaktowy
na naszej stronie.
Parametry oraz kształt magnesu neodymowego testujesz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry - MW 10x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010003 |
| GTIN/EAN | 5906301810001 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.82 kg / 8.01 N |
| Indukcja magnetyczna ~ ? | 178.06 mT / 1781 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Niniejsze informacje są wynik analizy inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MW 10x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1780 Gs
178.0 mT
|
0.82 kg / 820.0 g
8.0 N
|
słaby uchwyt |
| 1 mm |
1557 Gs
155.7 mT
|
0.63 kg / 627.2 g
6.2 N
|
słaby uchwyt |
| 2 mm |
1253 Gs
125.3 mT
|
0.41 kg / 406.2 g
4.0 N
|
słaby uchwyt |
| 3 mm |
958 Gs
95.8 mT
|
0.24 kg / 237.4 g
2.3 N
|
słaby uchwyt |
| 5 mm |
530 Gs
53.0 mT
|
0.07 kg / 72.8 g
0.7 N
|
słaby uchwyt |
| 10 mm |
140 Gs
14.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
słaby uchwyt |
| 15 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.7 g
0.0 N
|
słaby uchwyt |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MW 10x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.16 kg / 164.0 g
1.6 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 126.0 g
1.2 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 246.0 g
2.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.16 kg / 164.0 g
1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 82.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.41 kg / 410.0 g
4.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 10x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 82.0 g
0.8 N
|
| 1 mm |
|
0.21 kg / 205.0 g
2.0 N
|
| 2 mm |
|
0.41 kg / 410.0 g
4.0 N
|
| 5 mm |
|
0.82 kg / 820.0 g
8.0 N
|
| 10 mm |
|
0.82 kg / 820.0 g
8.0 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MW 10x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.82 kg / 820.0 g
8.0 N
|
OK |
| 40 °C | -2.2% |
0.80 kg / 802.0 g
7.9 N
|
OK |
| 60 °C | -4.4% |
0.78 kg / 783.9 g
7.7 N
|
|
| 80 °C | -6.6% |
0.77 kg / 765.9 g
7.5 N
|
|
| 100 °C | -28.8% |
0.58 kg / 583.8 g
5.7 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MW 10x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.53 kg / 1534 g
15.1 N
3 185 Gs
|
N/A |
| 1 mm |
1.38 kg / 1376 g
13.5 N
3 371 Gs
|
1.24 kg / 1238 g
12.1 N
~0 Gs
|
| 2 mm |
1.17 kg / 1174 g
11.5 N
3 114 Gs
|
1.06 kg / 1056 g
10.4 N
~0 Gs
|
| 3 mm |
0.96 kg / 960 g
9.4 N
2 817 Gs
|
0.86 kg / 864 g
8.5 N
~0 Gs
|
| 5 mm |
0.59 kg / 586 g
5.8 N
2 201 Gs
|
0.53 kg / 528 g
5.2 N
~0 Gs
|
| 10 mm |
0.14 kg / 136 g
1.3 N
1 060 Gs
|
0.12 kg / 123 g
1.2 N
~0 Gs
|
| 20 mm |
0.01 kg / 10 g
0.1 N
281 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
26 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 10x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 10x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.91 km/h
(8.58 m/s)
|
0.03 J | |
| 30 mm |
53.32 km/h
(14.81 m/s)
|
0.10 J | |
| 50 mm |
68.84 km/h
(19.12 m/s)
|
0.16 J | |
| 100 mm |
97.35 km/h
(27.04 m/s)
|
0.32 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 10x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 10x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 717 Mx | 17.2 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 10x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.82 kg | Standard |
| Woda (dno rzeki) |
0.94 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której wymiar poprzeczny wynosi ok. 10 mm
- charakteryzującej się gładkością
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Odstęp (między magnesem a blachą), ponieważ nawet bardzo mała przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Typ metalu – nie każda stal reaguje tak samo. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Wykończenie powierzchni – pełny kontakt jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Ponadto, nawet minimalna przerwa między powierzchnią magnesu, a blachą redukuje nośność.
Bezpieczna praca przy magnesach neodymowych
Urządzenia elektroniczne
Nie zbliżaj magnesów do portfela, komputera czy telewizora. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Urazy ciała
Duże magnesy mogą połamać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa silne magnesy.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Zakaz obróbki
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Chronić przed dziećmi
Zawsze chroń magnesy przed najmłodszymi. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Przegrzanie magnesu
Chroń przed wysoką temperaturą. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ostrzeżenie dla alergików
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Ostrzeżenie dla sercowców
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić działanie implantu.
