MW 10x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010003
GTIN: 5906301810001
Średnica Ø
10 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.82 kg / 8.01 N
Indukcja magnetyczna
178.06 mT / 1781 Gs
Powłoka
[NiCuNi] nikiel
0.431 ZŁ z VAT / szt. + cena za transport
0.350 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie zostaw wiadomość za pomocą
formularz
na stronie kontaktowej.
Właściwości i budowę elementów magnetycznych wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MW 10x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010003 |
| GTIN | 5906301810001 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.82 kg / 8.01 N |
| Indukcja magnetyczna ~ ? | 178.06 mT / 1781 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - parametry techniczne
Niniejsze informacje stanowią rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy NdFeB. Realne warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
MW 10x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1780 Gs
178.0 mT
|
0.82 kg / 820.0 g
8.0 N
|
bezpieczny |
| 1 mm |
1557 Gs
155.7 mT
|
0.63 kg / 627.2 g
6.2 N
|
bezpieczny |
| 2 mm |
1253 Gs
125.3 mT
|
0.41 kg / 406.2 g
4.0 N
|
bezpieczny |
| 3 mm |
958 Gs
95.8 mT
|
0.24 kg / 237.4 g
2.3 N
|
bezpieczny |
| 5 mm |
530 Gs
53.0 mT
|
0.07 kg / 72.8 g
0.7 N
|
bezpieczny |
| 10 mm |
140 Gs
14.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
bezpieczny |
| 15 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
MW 10x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.16 kg / 164.0 g
1.6 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 126.0 g
1.2 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 246.0 g
2.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.16 kg / 164.0 g
1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 82.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.41 kg / 410.0 g
4.0 N
|
MW 10x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 82.0 g
0.8 N
|
| 1 mm |
|
0.21 kg / 205.0 g
2.0 N
|
| 2 mm |
|
0.41 kg / 410.0 g
4.0 N
|
| 5 mm |
|
0.82 kg / 820.0 g
8.0 N
|
| 10 mm |
|
0.82 kg / 820.0 g
8.0 N
|
MW 10x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.82 kg / 820.0 g
8.0 N
|
OK |
| 40 °C | -2.2% |
0.80 kg / 802.0 g
7.9 N
|
OK |
| 60 °C | -4.4% |
0.78 kg / 783.9 g
7.7 N
|
|
| 80 °C | -6.6% |
0.77 kg / 765.9 g
7.5 N
|
|
| 100 °C | -28.8% |
0.58 kg / 583.8 g
5.7 N
|
MW 10x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.82 kg / 821 g
8.1 N
3 563 Gs
|
N/A |
| 1 mm |
0.63 kg / 627 g
6.2 N
3 371 Gs
|
0.56 kg / 564 g
5.5 N
~0 Gs
|
| 2 mm |
0.41 kg / 406 g
4.0 N
3 114 Gs
|
0.37 kg / 366 g
3.6 N
~0 Gs
|
| 3 mm |
0.24 kg / 237 g
2.3 N
2 817 Gs
|
0.21 kg / 214 g
2.1 N
~0 Gs
|
| 5 mm |
0.07 kg / 73 g
0.7 N
2 201 Gs
|
0.07 kg / 65 g
0.6 N
~0 Gs
|
| 10 mm |
0.01 kg / 5 g
0.1 N
1 060 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
281 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
26 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 10x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.91 km/h
(8.58 m/s)
|
0.03 J | |
| 30 mm |
53.32 km/h
(14.81 m/s)
|
0.10 J | |
| 50 mm |
68.84 km/h
(19.12 m/s)
|
0.16 J | |
| 100 mm |
97.35 km/h
(27.04 m/s)
|
0.32 J |
MW 10x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 717 Mx | 17.2 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
MW 10x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.82 kg | Standard |
| Woda (dno rzeki) |
0.94 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
Inne oferty
UMP 75x25 [M10x3] GW F200 GOLD Lina / N42 - uchwyty magnetyczne do poszukiwań
Wady oraz zalety magnesów z neodymu NdFeB.
Oprócz niezwykłą mocą, magnesy typu NdFeB gwarantują szereg innych zalet::
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im elegancki i lśniący charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je wykonać w dowolnych formach, dopasowanych do konkretnego projektu.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Mimo zalet, posiadają też wady:
- Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
Widoczny w opisie parametr udźwigu odnosi się do maksymalnych osiągów, którą zmierzono w idealnych warunkach testowych, a mianowicie:
- przy kontakcie z zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- z płaszczyzną idealnie równą
- przy zerowej szczelinie (brak farby)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Praktyczne aspekty udźwigu – czynniki
Trzeba mieć na uwadze, że siła w aplikacji może być niższe zależnie od następujących czynników, zaczynając od najistotniejszych:
- Dystans (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
* Udźwig mierzono używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zakaz zabawy
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są tragiczne.
Podatność na pękanie
Spieki NdFeB to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Trwała utrata siły
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zniszczy jego domenę magnetyczną i udźwig.
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem umieszczaj dłoni między dwa przyciągające się elementy.
Uwaga medyczna
Osoby z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Bezpieczna praca
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Niklowa powłoka a alergia
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz magnesy powlekane tworzywem.
Zagrożenie wybuchem pyłu
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Niszczenie danych
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Zagrożenie!
Więcej informacji o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
