MW 10x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010003
GTIN/EAN: 5906301810001
Średnica Ø
10 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.82 kg / 8.01 N
Indukcja magnetyczna
178.06 mT / 1781 Gs
Powłoka
[NiCuNi] nikiel
0.431 ZŁ z VAT / szt. + cena za transport
0.350 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz kłopot z wyborem?
Dzwoń do nas
+48 22 499 98 98
alternatywnie napisz za pomocą
formularz
na stronie kontaktowej.
Właściwości a także kształt magnesu obliczysz u nas w
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
MW 10x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010003 |
| GTIN/EAN | 5906301810001 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.82 kg / 8.01 N |
| Indukcja magnetyczna ~ ? | 178.06 mT / 1781 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu neodymowego - dane
Przedstawione informacje są rezultat symulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
MW 10x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1780 Gs
178.0 mT
|
0.82 kg / 820.0 g
8.0 N
|
słaby uchwyt |
| 1 mm |
1557 Gs
155.7 mT
|
0.63 kg / 627.2 g
6.2 N
|
słaby uchwyt |
| 2 mm |
1253 Gs
125.3 mT
|
0.41 kg / 406.2 g
4.0 N
|
słaby uchwyt |
| 3 mm |
958 Gs
95.8 mT
|
0.24 kg / 237.4 g
2.3 N
|
słaby uchwyt |
| 5 mm |
530 Gs
53.0 mT
|
0.07 kg / 72.8 g
0.7 N
|
słaby uchwyt |
| 10 mm |
140 Gs
14.0 mT
|
0.01 kg / 5.1 g
0.1 N
|
słaby uchwyt |
| 15 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.7 g
0.0 N
|
słaby uchwyt |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 10x1.5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.16 kg / 164.0 g
1.6 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 126.0 g
1.2 N
|
| 2 mm | Stal (~0.2) |
0.08 kg / 82.0 g
0.8 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 10x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.25 kg / 246.0 g
2.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.16 kg / 164.0 g
1.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.08 kg / 82.0 g
0.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.41 kg / 410.0 g
4.0 N
|
MW 10x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.08 kg / 82.0 g
0.8 N
|
| 1 mm |
|
0.21 kg / 205.0 g
2.0 N
|
| 2 mm |
|
0.41 kg / 410.0 g
4.0 N
|
| 5 mm |
|
0.82 kg / 820.0 g
8.0 N
|
| 10 mm |
|
0.82 kg / 820.0 g
8.0 N
|
MW 10x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.82 kg / 820.0 g
8.0 N
|
OK |
| 40 °C | -2.2% |
0.80 kg / 802.0 g
7.9 N
|
OK |
| 60 °C | -4.4% |
0.78 kg / 783.9 g
7.7 N
|
|
| 80 °C | -6.6% |
0.77 kg / 765.9 g
7.5 N
|
|
| 100 °C | -28.8% |
0.58 kg / 583.8 g
5.7 N
|
MW 10x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.53 kg / 1534 g
15.1 N
3 185 Gs
|
N/A |
| 1 mm |
1.38 kg / 1376 g
13.5 N
3 371 Gs
|
1.24 kg / 1238 g
12.1 N
~0 Gs
|
| 2 mm |
1.17 kg / 1174 g
11.5 N
3 114 Gs
|
1.06 kg / 1056 g
10.4 N
~0 Gs
|
| 3 mm |
0.96 kg / 960 g
9.4 N
2 817 Gs
|
0.86 kg / 864 g
8.5 N
~0 Gs
|
| 5 mm |
0.59 kg / 586 g
5.8 N
2 201 Gs
|
0.53 kg / 528 g
5.2 N
~0 Gs
|
| 10 mm |
0.14 kg / 136 g
1.3 N
1 060 Gs
|
0.12 kg / 123 g
1.2 N
~0 Gs
|
| 20 mm |
0.01 kg / 10 g
0.1 N
281 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
26 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 10x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 10x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.91 km/h
(8.58 m/s)
|
0.03 J | |
| 30 mm |
53.32 km/h
(14.81 m/s)
|
0.10 J | |
| 50 mm |
68.84 km/h
(19.12 m/s)
|
0.16 J | |
| 100 mm |
97.35 km/h
(27.04 m/s)
|
0.32 J |
MW 10x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x1.5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 717 Mx | 17.2 µWb |
| Współczynnik Pc | 0.22 | Niski (Płaski) |
MW 10x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.82 kg | Standard |
| Woda (dno rzeki) |
0.94 kg
(+0.12 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma tylko ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.22
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się gładkością
- przy zerowej szczelinie (bez powłok)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Odstęp (pomiędzy magnesem a blachą), gdyż nawet mikroskopijna odległość (np. 0,5 mm) może spowodować drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Warunki termiczne – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig wyznaczano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet 75%. Dodatkowo, nawet minimalna przerwa między powierzchnią magnesu, a blachą obniża nośność.
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj poza zasięgiem niepowołanych osób.
Temperatura pracy
Monitoruj warunki termiczne. Ekspozycja magnesu na wysoką temperaturę zniszczy jego strukturę magnetyczną i siłę przyciągania.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Samozapłon
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Bezpieczny dystans
Ekstremalne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Trzymaj dystans min. 10 cm.
Kruchy spiek
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zakłócenia GPS i telefonów
Ważna informacja: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Ryzyko uczulenia
Badania wskazują, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Implanty medyczne
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
