MW 10x1.5 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010003
GTIN: 5906301810001
Średnica Ø
10 mm [±0,1 mm]
Wysokość
1.5 mm [±0,1 mm]
Waga
0.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.68 kg / 6.69 N
Indukcja magnetyczna
178.06 mT
Powłoka
[NiCuNi] nikiel
0.431 ZŁ z VAT / szt. + cena za transport
0.350 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Potrzebujesz porady?
Dzwoń do nas
+48 888 99 98 98
albo skontaktuj się korzystając z
formularz zgłoszeniowy
na stronie kontaktowej.
Właściwości oraz formę magnesów testujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MW 10x1.5 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 10x1.5 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010003 |
| GTIN | 5906301810001 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 1.5 mm [±0,1 mm] |
| Waga | 0.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.68 kg / 6.69 N |
| Indukcja magnetyczna ~ ? | 178.06 mT |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna uchwytu - raport
Niniejsze informacje stanowią rezultat analizy inżynierskiej. Wyniki oparte są na modelach dla materiału NdFeB. Realne osiągi mogą się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.
MW 10x1.5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1780 Gs
178.0 mT
|
0.68 kg / 680.0 g
6.7 N
|
słaby uchwyt |
| 1 mm |
1557 Gs
155.7 mT
|
0.52 kg / 520.1 g
5.1 N
|
słaby uchwyt |
| 2 mm |
1253 Gs
125.3 mT
|
0.34 kg / 336.9 g
3.3 N
|
słaby uchwyt |
| 5 mm |
530 Gs
53.0 mT
|
0.06 kg / 60.3 g
0.6 N
|
słaby uchwyt |
| 10 mm |
140 Gs
14.0 mT
|
0.00 kg / 4.2 g
0.0 N
|
słaby uchwyt |
| 15 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.6 g
0.0 N
|
słaby uchwyt |
| 20 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 10x1.5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.20 kg / 204.0 g
2.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 136.0 g
1.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 68.0 g
0.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.34 kg / 340.0 g
3.3 N
|
MW 10x1.5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 68.0 g
0.7 N
|
| 1 mm |
|
0.17 kg / 170.0 g
1.7 N
|
| 2 mm |
|
0.34 kg / 340.0 g
3.3 N
|
| 5 mm |
|
0.68 kg / 680.0 g
6.7 N
|
| 10 mm |
|
0.68 kg / 680.0 g
6.7 N
|
MW 10x1.5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.68 kg / 680.0 g
6.7 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 665.0 g
6.5 N
|
OK |
| 60 °C | -4.4% |
0.65 kg / 650.1 g
6.4 N
|
OK |
| 80 °C | -6.6% |
0.64 kg / 635.1 g
6.2 N
|
|
| 100 °C | -28.8% |
0.48 kg / 484.2 g
4.7 N
|
MW 10x1.5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.02 kg / 1020.0 g
10.0 N
|
N/A |
| 2 mm |
0.51 kg / 510.0 g
5.0 N
|
0.48 kg / 476.0 g
4.7 N
|
| 5 mm |
0.09 kg / 90.0 g
0.9 N
|
0.08 kg / 84.0 g
0.8 N
|
| 10 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
| 20 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
| 50 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
MW 10x1.5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 3.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
MW 10x1.5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.14 km/h
(7.82 m/s)
|
0.03 J | |
| 30 mm |
48.56 km/h
(13.49 m/s)
|
0.08 J | |
| 50 mm |
62.69 km/h
(17.41 m/s)
|
0.13 J | |
| 100 mm |
88.65 km/h
(24.63 m/s)
|
0.27 J |
MW 10x1.5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 10x1.5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.68 kg | Standard |
| Woda (dno rzeki) |
0.78 kg
(+0.10 kg Zysk z wyporności)
|
+14.5% |
Inne produkty
Wady oraz zalety magnesów neodymowych NdFeB.
Należy pamiętać, iż obok wysokiej mocy, magnesy te wyróżniają się następującymi plusami:
- Długowieczność to ich atut – nawet po 10 lat utrata siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po zaawansowaną aparaturę medyczną.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Warto znać też słabe strony magnesów neodymowych:
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Najwyższa nośność magnesu – od czego zależy?
Moc magnesu została wyznaczona dla warunków idealnego styku, uwzględniającej:
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- bez żadnej warstwy izolującej pomiędzy magnesem a stalą
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temp. ok. 20°C
Co wpływa na udźwig w praktyce
W rzeczywistych zastosowaniach, realna moc zależy od kilku kluczowych aspektów, wymienionych od najbardziej istotnych:
- Dystans (między magnesem a blachą), bowiem nawet niewielka przerwa (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast generować siłę.
- Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
* Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Bezpieczna praca z magnesami neodymowymi
Rozruszniki serca
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Nadwrażliwość na metale
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie przerwać pracę z magnesami i użyć środków ochronnych.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Ogromna siła
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Zagrożenie dla nawigacji
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i nawigacjach GPS. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Limity termiczne
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Obróbka mechaniczna
Pył generowany podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Karty i dyski
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Tylko dla dorosłych
Neodymowe magnesy to nie zabawki. Inhalacja kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Siła zgniatająca
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Ostrzeżenie!
Dowiedz się więcej o zagrożeniach w artykule: Niebezpieczne magnesy.
