MW 15x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010028
GTIN/EAN: 5906301810278
Średnica Ø
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.51 kg / 14.84 N
Indukcja magnetyczna
159.70 mT / 1597 Gs
Powłoka
[NiCuNi] nikiel
1.218 ZŁ z VAT / szt. + cena za transport
0.990 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo napisz korzystając z
formularz
na stronie kontakt.
Właściwości oraz wygląd magnesów przetestujesz u nas w
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MW 15x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010028 |
| GTIN/EAN | 5906301810278 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.51 kg / 14.84 N |
| Indukcja magnetyczna ~ ? | 159.70 mT / 1597 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione dane są rezultat symulacji inżynierskiej. Wyniki oparte są na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1597 Gs
159.7 mT
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
słaby uchwyt |
| 1 mm |
1483 Gs
148.3 mT
|
1.30 kg / 2.87 lbs
1303.0 g / 12.8 N
|
słaby uchwyt |
| 2 mm |
1320 Gs
132.0 mT
|
1.03 kg / 2.28 lbs
1032.2 g / 10.1 N
|
słaby uchwyt |
| 3 mm |
1137 Gs
113.7 mT
|
0.77 kg / 1.69 lbs
765.0 g / 7.5 N
|
słaby uchwyt |
| 5 mm |
791 Gs
79.1 mT
|
0.37 kg / 0.82 lbs
370.8 g / 3.6 N
|
słaby uchwyt |
| 10 mm |
298 Gs
29.8 mT
|
0.05 kg / 0.12 lbs
52.5 g / 0.5 N
|
słaby uchwyt |
| 15 mm |
127 Gs
12.7 mT
|
0.01 kg / 0.02 lbs
9.6 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.01 lbs
2.4 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MW 15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.30 kg / 0.67 lbs
302.0 g / 3.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 0.57 lbs
260.0 g / 2.6 N
|
| 2 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 0.34 lbs
154.0 g / 1.5 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MW 15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.45 kg / 1.00 lbs
453.0 g / 4.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.30 kg / 0.67 lbs
302.0 g / 3.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.76 kg / 1.66 lbs
755.0 g / 7.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MW 15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 0.33 lbs
151.0 g / 1.5 N
|
| 1 mm |
|
0.38 kg / 0.83 lbs
377.5 g / 3.7 N
|
| 2 mm |
|
0.76 kg / 1.66 lbs
755.0 g / 7.4 N
|
| 3 mm |
|
1.13 kg / 2.50 lbs
1132.5 g / 11.1 N
|
| 5 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
| 10 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
| 11 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
| 12 mm |
|
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.51 kg / 3.33 lbs
1510.0 g / 14.8 N
|
OK |
| 40 °C | -2.2% |
1.48 kg / 3.26 lbs
1476.8 g / 14.5 N
|
OK |
| 60 °C | -4.4% |
1.44 kg / 3.18 lbs
1443.6 g / 14.2 N
|
|
| 80 °C | -6.6% |
1.41 kg / 3.11 lbs
1410.3 g / 13.8 N
|
|
| 100 °C | -28.8% |
1.08 kg / 2.37 lbs
1075.1 g / 10.5 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MW 15x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
2.78 kg / 6.12 lbs
2 915 Gs
|
0.42 kg / 0.92 lbs
417 g / 4.1 N
|
N/A |
| 1 mm |
2.61 kg / 5.76 lbs
3 096 Gs
|
0.39 kg / 0.86 lbs
392 g / 3.8 N
|
2.35 kg / 5.18 lbs
~0 Gs
|
| 2 mm |
2.40 kg / 5.28 lbs
2 966 Gs
|
0.36 kg / 0.79 lbs
360 g / 3.5 N
|
2.16 kg / 4.76 lbs
~0 Gs
|
| 3 mm |
2.15 kg / 4.75 lbs
2 812 Gs
|
0.32 kg / 0.71 lbs
323 g / 3.2 N
|
1.94 kg / 4.27 lbs
~0 Gs
|
| 5 mm |
1.65 kg / 3.63 lbs
2 459 Gs
|
0.25 kg / 0.54 lbs
247 g / 2.4 N
|
1.48 kg / 3.27 lbs
~0 Gs
|
| 10 mm |
0.68 kg / 1.50 lbs
1 582 Gs
|
0.10 kg / 0.23 lbs
102 g / 1.0 N
|
0.61 kg / 1.35 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.21 lbs
595 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
10 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MW 15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.59 km/h
(6.83 m/s)
|
0.06 J | |
| 30 mm |
41.70 km/h
(11.58 m/s)
|
0.18 J | |
| 50 mm |
53.83 km/h
(14.95 m/s)
|
0.30 J | |
| 100 mm |
76.13 km/h
(21.15 m/s)
|
0.59 J |
Tabela 9: Parametry powłoki (trwałość)
MW 15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 541 Mx | 35.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MW 15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.51 kg | Standard |
| Woda (dno rzeki) |
1.73 kg
(+0.22 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, rezonansach oraz przemyśle komputerowym.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o przekroju przynajmniej 10 mm
- charakteryzującej się gładkością
- przy bezpośrednim styku (brak powłok)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w standardowej temperaturze otoczenia
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda stal powoduje nasycenie magnetyczne, przez co część mocy jest tracona w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Domieszki stopowe zmniejszają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu realizowano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między magnesem, a blachą obniża udźwig.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Wpływ na smartfony
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Ryzyko zmiażdżenia
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Kruchość materiału
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nośniki danych
Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, czasomierze).
To nie jest zabawka
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem niepowołanych osób.
Nadwrażliwość na metale
Część populacji ma uczulenie na nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może wywołać zaczerwienienie skóry. Rekomendujemy używanie rękawic bezlateksowych.
Samozapłon
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Ostrożność wymagana
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Maksymalna temperatura
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Implanty medyczne
Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
