MW 15x2 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010028
GTIN/EAN: 5906301810278
Średnica Ø
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
2.65 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.51 kg / 14.84 N
Indukcja magnetyczna
159.70 mT / 1597 Gs
Powłoka
[NiCuNi] nikiel
1.218 ZŁ z VAT / szt. + cena za transport
0.990 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo napisz poprzez
formularz zgłoszeniowy
w sekcji kontakt.
Udźwig oraz budowę magnesów neodymowych obliczysz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Dane techniczne - MW 15x2 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x2 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010028 |
| GTIN/EAN | 5906301810278 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 2.65 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.51 kg / 14.84 N |
| Indukcja magnetyczna ~ ? | 159.70 mT / 1597 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - dane
Poniższe dane są rezultat analizy matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MW 15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1597 Gs
159.7 mT
|
1.51 kg / 1510.0 g
14.8 N
|
słaby uchwyt |
| 1 mm |
1483 Gs
148.3 mT
|
1.30 kg / 1303.0 g
12.8 N
|
słaby uchwyt |
| 2 mm |
1320 Gs
132.0 mT
|
1.03 kg / 1032.2 g
10.1 N
|
słaby uchwyt |
| 3 mm |
1137 Gs
113.7 mT
|
0.77 kg / 765.0 g
7.5 N
|
słaby uchwyt |
| 5 mm |
791 Gs
79.1 mT
|
0.37 kg / 370.8 g
3.6 N
|
słaby uchwyt |
| 10 mm |
298 Gs
29.8 mT
|
0.05 kg / 52.5 g
0.5 N
|
słaby uchwyt |
| 15 mm |
127 Gs
12.7 mT
|
0.01 kg / 9.6 g
0.1 N
|
słaby uchwyt |
| 20 mm |
63 Gs
6.3 mT
|
0.00 kg / 2.4 g
0.0 N
|
słaby uchwyt |
| 30 mm |
22 Gs
2.2 mT
|
0.00 kg / 0.3 g
0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MW 15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.30 kg / 302.0 g
3.0 N
|
| 1 mm | Stal (~0.2) |
0.26 kg / 260.0 g
2.6 N
|
| 2 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 154.0 g
1.5 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 74.0 g
0.7 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MW 15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.45 kg / 453.0 g
4.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.30 kg / 302.0 g
3.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.15 kg / 151.0 g
1.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.76 kg / 755.0 g
7.4 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.15 kg / 151.0 g
1.5 N
|
| 1 mm |
|
0.38 kg / 377.5 g
3.7 N
|
| 2 mm |
|
0.76 kg / 755.0 g
7.4 N
|
| 5 mm |
|
1.51 kg / 1510.0 g
14.8 N
|
| 10 mm |
|
1.51 kg / 1510.0 g
14.8 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MW 15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.51 kg / 1510.0 g
14.8 N
|
OK |
| 40 °C | -2.2% |
1.48 kg / 1476.8 g
14.5 N
|
OK |
| 60 °C | -4.4% |
1.44 kg / 1443.6 g
14.2 N
|
|
| 80 °C | -6.6% |
1.41 kg / 1410.3 g
13.8 N
|
|
| 100 °C | -28.8% |
1.08 kg / 1075.1 g
10.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MW 15x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
2.78 kg / 2777 g
27.2 N
2 915 Gs
|
N/A |
| 1 mm |
2.61 kg / 2611 g
25.6 N
3 096 Gs
|
2.35 kg / 2350 g
23.1 N
~0 Gs
|
| 2 mm |
2.40 kg / 2397 g
23.5 N
2 966 Gs
|
2.16 kg / 2157 g
21.2 N
~0 Gs
|
| 3 mm |
2.15 kg / 2154 g
21.1 N
2 812 Gs
|
1.94 kg / 1938 g
19.0 N
~0 Gs
|
| 5 mm |
1.65 kg / 1646 g
16.1 N
2 459 Gs
|
1.48 kg / 1482 g
14.5 N
~0 Gs
|
| 10 mm |
0.68 kg / 682 g
6.7 N
1 582 Gs
|
0.61 kg / 614 g
6.0 N
~0 Gs
|
| 20 mm |
0.10 kg / 96 g
0.9 N
595 Gs
|
0.09 kg / 87 g
0.9 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
71 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MW 15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.59 km/h
(6.83 m/s)
|
0.06 J | |
| 30 mm |
41.70 km/h
(11.58 m/s)
|
0.18 J | |
| 50 mm |
53.83 km/h
(14.95 m/s)
|
0.30 J | |
| 100 mm |
76.13 km/h
(21.15 m/s)
|
0.59 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 541 Mx | 35.4 µWb |
| Współczynnik Pc | 0.20 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MW 15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.51 kg | Standard |
| Woda (dno rzeki) |
1.73 kg
(+0.22 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.20
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z użyciem płyty ze stali o wysokiej przenikalności, pełniącej rolę zwora magnetyczna
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Kierunek działania siły – maksymalny parametr uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest zazwyczaj wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha limituje udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają interakcję z magnesem.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Czynnik termiczny – gorące środowisko zmniejsza siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Nie zbliżaj do komputera
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Zagrożenie dla najmłodszych
Silne magnesy nie są przeznaczone dla dzieci. Przypadkowe zjedzenie dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Maksymalna temperatura
Unikaj gorąca. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Potężne pole
Stosuj magnesy odpowiedzialnie. Ich potężna moc może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Kruchość materiału
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Upadek dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Implanty kardiologiczne
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Ryzyko zmiażdżenia
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Łatwopalność
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Zakłócenia GPS i telefonów
Silne pole magnetyczne zakłóca funkcjonowanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów do smartfona, aby uniknąć awarii czujników.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
