MW 15x1 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010026
GTIN/EAN: 5906301810254
Średnica Ø
15 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
1.33 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.44 kg / 4.29 N
Indukcja magnetyczna
81.93 mT / 819 Gs
Powłoka
[NiCuNi] nikiel
0.800 ZŁ z VAT / szt. + cena za transport
0.650 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub daj znać za pomocą
formularz zapytania
na stronie kontakt.
Masę i formę magnesów neodymowych skontrolujesz w naszym
modułowym kalkulatorze.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MW 15x1 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 15x1 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010026 |
| GTIN/EAN | 5906301810254 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 15 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 1.33 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.44 kg / 4.29 N |
| Indukcja magnetyczna ~ ? | 81.93 mT / 819 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane stanowią rezultat analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MW 15x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
819 Gs
81.9 mT
|
0.44 kg / 440.0 g
4.3 N
|
słaby uchwyt |
| 1 mm |
778 Gs
77.8 mT
|
0.40 kg / 397.0 g
3.9 N
|
słaby uchwyt |
| 2 mm |
705 Gs
70.5 mT
|
0.33 kg / 326.0 g
3.2 N
|
słaby uchwyt |
| 3 mm |
615 Gs
61.5 mT
|
0.25 kg / 248.0 g
2.4 N
|
słaby uchwyt |
| 5 mm |
434 Gs
43.4 mT
|
0.12 kg / 123.5 g
1.2 N
|
słaby uchwyt |
| 10 mm |
163 Gs
16.3 mT
|
0.02 kg / 17.3 g
0.2 N
|
słaby uchwyt |
| 15 mm |
68 Gs
6.8 mT
|
0.00 kg / 3.1 g
0.0 N
|
słaby uchwyt |
| 20 mm |
34 Gs
3.4 mT
|
0.00 kg / 0.7 g
0.0 N
|
słaby uchwyt |
| 30 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MW 15x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.09 kg / 88.0 g
0.9 N
|
| 1 mm | Stal (~0.2) |
0.08 kg / 80.0 g
0.8 N
|
| 2 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 3 mm | Stal (~0.2) |
0.05 kg / 50.0 g
0.5 N
|
| 5 mm | Stal (~0.2) |
0.02 kg / 24.0 g
0.2 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MW 15x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.13 kg / 132.0 g
1.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.09 kg / 88.0 g
0.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 44.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.22 kg / 220.0 g
2.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MW 15x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 44.0 g
0.4 N
|
| 1 mm |
|
0.11 kg / 110.0 g
1.1 N
|
| 2 mm |
|
0.22 kg / 220.0 g
2.2 N
|
| 5 mm |
|
0.44 kg / 440.0 g
4.3 N
|
| 10 mm |
|
0.44 kg / 440.0 g
4.3 N
|
Tabela 5: Praca w cieple (stabilność) - próg odporności
MW 15x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.44 kg / 440.0 g
4.3 N
|
OK |
| 40 °C | -2.2% |
0.43 kg / 430.3 g
4.2 N
|
OK |
| 60 °C | -4.4% |
0.42 kg / 420.6 g
4.1 N
|
|
| 80 °C | -6.6% |
0.41 kg / 411.0 g
4.0 N
|
|
| 100 °C | -28.8% |
0.31 kg / 313.3 g
3.1 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MW 15x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
0.73 kg / 731 g
7.2 N
1 597 Gs
|
N/A |
| 1 mm |
0.70 kg / 703 g
6.9 N
1 607 Gs
|
0.63 kg / 633 g
6.2 N
~0 Gs
|
| 2 mm |
0.66 kg / 660 g
6.5 N
1 556 Gs
|
0.59 kg / 594 g
5.8 N
~0 Gs
|
| 3 mm |
0.60 kg / 604 g
5.9 N
1 489 Gs
|
0.54 kg / 544 g
5.3 N
~0 Gs
|
| 5 mm |
0.48 kg / 476 g
4.7 N
1 323 Gs
|
0.43 kg / 429 g
4.2 N
~0 Gs
|
| 10 mm |
0.21 kg / 205 g
2.0 N
868 Gs
|
0.18 kg / 185 g
1.8 N
~0 Gs
|
| 20 mm |
0.03 kg / 29 g
0.3 N
325 Gs
|
0.03 kg / 26 g
0.3 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
37 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MW 15x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 15x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
18.79 km/h
(5.22 m/s)
|
0.02 J | |
| 30 mm |
31.78 km/h
(8.83 m/s)
|
0.05 J | |
| 50 mm |
41.02 km/h
(11.39 m/s)
|
0.09 J | |
| 100 mm |
58.01 km/h
(16.11 m/s)
|
0.17 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MW 15x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 15x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 025 Mx | 20.3 µWb |
| Współczynnik Pc | 0.11 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 15x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.44 kg | Standard |
| Woda (dno rzeki) |
0.50 kg
(+0.06 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% nominalnego udźwigu.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.11
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to marginalne ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (nikiel, Au, Ag) mają estetyczny, metaliczny wygląd.
- Generują skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Dają się łatwo formować do niestandardowych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- z płaszczyzną oczyszczoną i gładką
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Szczelina – obecność ciała obcego (farba, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Opór przy zsuwaniu magnesu po powierzchni jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 75%. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą obniża udźwig.
Instrukcja bezpiecznej obsługi magnesów
Zakaz zabawy
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Uszkodzenia ciała
Bloki magnetyczne mogą zmiażdżyć palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Uwaga na odpryski
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Nadwrażliwość na metale
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Przegrzanie magnesu
Typowe magnesy neodymowe (klasa N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ogromna siła
Używaj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.
Interferencja medyczna
Osoby z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Nie zbliżaj do komputera
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz skasować dane z kart.
