MW 12x50 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010020
GTIN/EAN: 5906301810193
Średnica Ø
12 mm [±0,1 mm]
Wysokość
50 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.62 kg / 25.73 N
Indukcja magnetyczna
614.94 mT / 6149 Gs
Powłoka
[NiCuNi] nikiel
28.29 ZŁ z VAT / szt. + cena za transport
23.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie daj znać za pomocą
formularz kontaktowy
przez naszą stronę.
Masę oraz kształt magnesu neodymowego sprawdzisz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MW 12x50 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x50 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010020 |
| GTIN/EAN | 5906301810193 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 50 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.62 kg / 25.73 N |
| Indukcja magnetyczna ~ ? | 614.94 mT / 6149 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione dane są bezpośredni efekt analizy inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MW 12x50 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6146 Gs
614.6 mT
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
uwaga |
| 1 mm |
5138 Gs
513.8 mT
|
1.83 kg / 4.04 lbs
1831.5 g / 18.0 N
|
słaby uchwyt |
| 2 mm |
4199 Gs
419.9 mT
|
1.22 kg / 2.70 lbs
1222.9 g / 12.0 N
|
słaby uchwyt |
| 3 mm |
3388 Gs
338.8 mT
|
0.80 kg / 1.76 lbs
796.3 g / 7.8 N
|
słaby uchwyt |
| 5 mm |
2194 Gs
219.4 mT
|
0.33 kg / 0.74 lbs
334.0 g / 3.3 N
|
słaby uchwyt |
| 10 mm |
853 Gs
85.3 mT
|
0.05 kg / 0.11 lbs
50.4 g / 0.5 N
|
słaby uchwyt |
| 15 mm |
417 Gs
41.7 mT
|
0.01 kg / 0.03 lbs
12.1 g / 0.1 N
|
słaby uchwyt |
| 20 mm |
239 Gs
23.9 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.00 lbs
0.7 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 12x50 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 1.16 lbs
524.0 g / 5.1 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 0.54 lbs
244.0 g / 2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MW 12x50 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.79 kg / 1.73 lbs
786.0 g / 7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 1.16 lbs
524.0 g / 5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 12x50 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 0.58 lbs
262.0 g / 2.6 N
|
| 1 mm |
|
0.66 kg / 1.44 lbs
655.0 g / 6.4 N
|
| 2 mm |
|
1.31 kg / 2.89 lbs
1310.0 g / 12.9 N
|
| 3 mm |
|
1.97 kg / 4.33 lbs
1965.0 g / 19.3 N
|
| 5 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 10 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 11 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
| 12 mm |
|
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MW 12x50 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.62 kg / 5.78 lbs
2620.0 g / 25.7 N
|
OK |
| 40 °C | -2.2% |
2.56 kg / 5.65 lbs
2562.4 g / 25.1 N
|
OK |
| 60 °C | -4.4% |
2.50 kg / 5.52 lbs
2504.7 g / 24.6 N
|
OK |
| 80 °C | -6.6% |
2.45 kg / 5.39 lbs
2447.1 g / 24.0 N
|
|
| 100 °C | -28.8% |
1.87 kg / 4.11 lbs
1865.4 g / 18.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MW 12x50 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
26.33 kg / 58.05 lbs
6 179 Gs
|
3.95 kg / 8.71 lbs
3950 g / 38.7 N
|
N/A |
| 1 mm |
22.19 kg / 48.93 lbs
11 284 Gs
|
3.33 kg / 7.34 lbs
3329 g / 32.7 N
|
19.97 kg / 44.04 lbs
~0 Gs
|
| 2 mm |
18.41 kg / 40.58 lbs
10 277 Gs
|
2.76 kg / 6.09 lbs
2761 g / 27.1 N
|
16.57 kg / 36.53 lbs
~0 Gs
|
| 3 mm |
15.11 kg / 33.30 lbs
9 309 Gs
|
2.27 kg / 5.00 lbs
2266 g / 22.2 N
|
13.60 kg / 29.97 lbs
~0 Gs
|
| 5 mm |
9.94 kg / 21.91 lbs
7 551 Gs
|
1.49 kg / 3.29 lbs
1491 g / 14.6 N
|
8.94 kg / 19.72 lbs
~0 Gs
|
| 10 mm |
3.36 kg / 7.40 lbs
4 389 Gs
|
0.50 kg / 1.11 lbs
504 g / 4.9 N
|
3.02 kg / 6.66 lbs
~0 Gs
|
| 20 mm |
0.51 kg / 1.12 lbs
1 706 Gs
|
0.08 kg / 0.17 lbs
76 g / 0.7 N
|
0.46 kg / 1.01 lbs
~0 Gs
|
| 50 mm |
0.02 kg / 0.04 lbs
303 Gs
|
0.00 kg / 0.01 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
206 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
148 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
110 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
66 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 12x50 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 12x50 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
8.02 km/h
(2.23 m/s)
|
0.11 J | |
| 30 mm |
13.73 km/h
(3.81 m/s)
|
0.31 J | |
| 50 mm |
17.73 km/h
(4.92 m/s)
|
0.51 J | |
| 100 mm |
25.07 km/h
(6.96 m/s)
|
1.03 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x50 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 12x50 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 230 Mx | 82.3 µWb |
| Współczynnik Pc | 1.49 | Wysoki (Stabilny) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MW 12x50 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.62 kg | Standard |
| Woda (dno rzeki) |
3.00 kg
(+0.38 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Praca w cieple
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.49
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gwinty.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- z wykorzystaniem płyty ze stali niskowęglowej, która służy jako idealny przewodnik strumienia
- posiadającej grubość min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- przy bezpośrednim styku (brak zanieczyszczeń)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) znacząco osłabia efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Faktura blachy – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Udźwig mierzono stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca przy magnesach neodymowych
Ryzyko połknięcia
Magnesy neodymowe to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością natychmiastowej operacji.
Nie przegrzewaj magnesów
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Pole magnetyczne a elektronika
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Rozruszniki serca
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Poważne obrażenia
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Łamliwość magnesów
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Zderzenie dwóch magnesów wywoła ich rozkruszenie na drobne kawałki.
Ogromna siła
Stosuj magnesy z rozwagą. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Alergia na nikiel
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i użyć środków ochronnych.
Obróbka mechaniczna
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest niebezpieczny.
Smartfony i tablety
Silne pole magnetyczne destabilizuje działanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
