MW 12x50 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010020
GTIN/EAN: 5906301810193
Średnica Ø
12 mm [±0,1 mm]
Wysokość
50 mm [±0,1 mm]
Waga
42.41 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.62 kg / 25.73 N
Indukcja magnetyczna
614.94 mT / 6149 Gs
Powłoka
[NiCuNi] nikiel
28.29 ZŁ z VAT / szt. + cena za transport
23.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz się targować?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub daj znać poprzez
formularz zgłoszeniowy
na naszej stronie.
Parametry a także formę magnesów neodymowych przetestujesz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
MW 12x50 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 12x50 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010020 |
| GTIN/EAN | 5906301810193 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 50 mm [±0,1 mm] |
| Waga | 42.41 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.62 kg / 25.73 N |
| Indukcja magnetyczna ~ ? | 614.94 mT / 6149 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Poniższe wartości stanowią rezultat analizy inżynierskiej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne warunki mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako wstępny drogowskaz przy projektowaniu systemów.
MW 12x50 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
6146 Gs
614.6 mT
|
2.62 kg / 2620.0 g
25.7 N
|
średnie ryzyko |
| 1 mm |
5138 Gs
513.8 mT
|
1.83 kg / 1831.5 g
18.0 N
|
bezpieczny |
| 2 mm |
4199 Gs
419.9 mT
|
1.22 kg / 1222.9 g
12.0 N
|
bezpieczny |
| 3 mm |
3388 Gs
338.8 mT
|
0.80 kg / 796.3 g
7.8 N
|
bezpieczny |
| 5 mm |
2194 Gs
219.4 mT
|
0.33 kg / 334.0 g
3.3 N
|
bezpieczny |
| 10 mm |
853 Gs
85.3 mT
|
0.05 kg / 50.4 g
0.5 N
|
bezpieczny |
| 15 mm |
417 Gs
41.7 mT
|
0.01 kg / 12.1 g
0.1 N
|
bezpieczny |
| 20 mm |
239 Gs
23.9 mT
|
0.00 kg / 4.0 g
0.0 N
|
bezpieczny |
| 30 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.7 g
0.0 N
|
bezpieczny |
| 50 mm |
33 Gs
3.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
MW 12x50 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.52 kg / 524.0 g
5.1 N
|
| 1 mm | Stal (~0.2) |
0.37 kg / 366.0 g
3.6 N
|
| 2 mm | Stal (~0.2) |
0.24 kg / 244.0 g
2.4 N
|
| 3 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
| 5 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 12x50 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.79 kg / 786.0 g
7.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.52 kg / 524.0 g
5.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.26 kg / 262.0 g
2.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.31 kg / 1310.0 g
12.9 N
|
MW 12x50 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.26 kg / 262.0 g
2.6 N
|
| 1 mm |
|
0.66 kg / 655.0 g
6.4 N
|
| 2 mm |
|
1.31 kg / 1310.0 g
12.9 N
|
| 5 mm |
|
2.62 kg / 2620.0 g
25.7 N
|
| 10 mm |
|
2.62 kg / 2620.0 g
25.7 N
|
MW 12x50 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.62 kg / 2620.0 g
25.7 N
|
OK |
| 40 °C | -2.2% |
2.56 kg / 2562.4 g
25.1 N
|
OK |
| 60 °C | -4.4% |
2.50 kg / 2504.7 g
24.6 N
|
OK |
| 80 °C | -6.6% |
2.45 kg / 2447.1 g
24.0 N
|
|
| 100 °C | -28.8% |
1.87 kg / 1865.4 g
18.3 N
|
MW 12x50 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
26.33 kg / 26333 g
258.3 N
6 179 Gs
|
N/A |
| 1 mm |
22.19 kg / 22193 g
217.7 N
11 284 Gs
|
19.97 kg / 19974 g
195.9 N
~0 Gs
|
| 2 mm |
18.41 kg / 18409 g
180.6 N
10 277 Gs
|
16.57 kg / 16568 g
162.5 N
~0 Gs
|
| 3 mm |
15.11 kg / 15106 g
148.2 N
9 309 Gs
|
13.60 kg / 13596 g
133.4 N
~0 Gs
|
| 5 mm |
9.94 kg / 9938 g
97.5 N
7 551 Gs
|
8.94 kg / 8944 g
87.7 N
~0 Gs
|
| 10 mm |
3.36 kg / 3357 g
32.9 N
4 389 Gs
|
3.02 kg / 3021 g
29.6 N
~0 Gs
|
| 20 mm |
0.51 kg / 507 g
5.0 N
1 706 Gs
|
0.46 kg / 456 g
4.5 N
~0 Gs
|
| 50 mm |
0.02 kg / 16 g
0.2 N
303 Gs
|
0.01 kg / 14 g
0.1 N
~0 Gs
|
MW 12x50 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MW 12x50 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
8.02 km/h
(2.23 m/s)
|
0.11 J | |
| 30 mm |
13.73 km/h
(3.81 m/s)
|
0.31 J | |
| 50 mm |
17.73 km/h
(4.92 m/s)
|
0.51 J | |
| 100 mm |
25.07 km/h
(6.96 m/s)
|
1.03 J |
MW 12x50 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 12x50 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 230 Mx | 82.3 µWb |
| Współczynnik Pc | 1.49 | Wysoki (Stabilny) |
MW 12x50 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.62 kg | Standard |
| Woda (dno rzeki) |
3.00 kg
(+0.38 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 1.49
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety oraz wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Powłoka ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w ciasnych przestrzeniach.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Nie należy ich nawiercać – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – co ma na to wpływ?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, która służy jako zwora magnetyczna
- posiadającej grubość minimum 10 mm dla pełnego zamknięcia strumienia
- z powierzchnią wolną od rys
- w warunkach bezszczelinowych (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w warunkach ok. 20°C
Praktyczny udźwig: czynniki wpływające
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) powoduje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość blachy – zbyt cienka blacha powoduje nasycenie magnetyczne, przez co część strumienia marnuje się na drugą stronę.
- Typ metalu – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Warunki termiczne – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Udźwig wyznaczano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża siłę trzymania.
Ochrona oczu
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Ostrzeżenie dla alergików
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Rekomendujemy stosowanie rękawic bezlateksowych.
Siła zgniatająca
Uważaj na palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Przechowuj z dala od niepowołanych osób.
Nie przegrzewaj magnesów
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Zakaz obróbki
Pył powstający podczas szlifowania magnesów jest łatwopalny. Nie wierć w magnesach bez odpowiedniego chłodzenia i wiedzy.
Interferencja magnetyczna
Uwaga: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od telefonu, tabletu i nawigacji.
Pole magnetyczne a elektronika
Unikaj zbliżania magnesów do dokumentów, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Nie lekceważ mocy
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub uszkodzić palce. Bądź przewidujący.
Zagrożenie życia
Ostrzeżenie medyczne: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
