MW 12x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010018
GTIN/EAN: 5906301810179
Średnica Ø
12 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.49 kg / 24.43 N
Indukcja magnetyczna
277.09 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
1.648 ZŁ z VAT / szt. + cena za transport
1.340 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Nie jesteś pewien wyboru?
Zadzwoń i zapytaj
+48 22 499 98 98
lub daj znać za pomocą
formularz zapytania
na naszej stronie.
Parametry a także kształt magnesu neodymowego zweryfikujesz u nas w
kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
MW 12x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka MW 12x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010018 |
| GTIN/EAN | 5906301810179 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.49 kg / 24.43 N |
| Indukcja magnetyczna ~ ? | 277.09 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - parametry techniczne
Poniższe dane stanowią rezultat kalkulacji matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz dla projektantów.
MW 12x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2770 Gs
277.0 mT
|
2.49 kg / 2490.0 g
24.4 N
|
mocny |
| 1 mm |
2420 Gs
242.0 mT
|
1.90 kg / 1900.6 g
18.6 N
|
słaby uchwyt |
| 2 mm |
2009 Gs
200.9 mT
|
1.31 kg / 1309.4 g
12.8 N
|
słaby uchwyt |
| 3 mm |
1611 Gs
161.1 mT
|
0.84 kg / 842.7 g
8.3 N
|
słaby uchwyt |
| 5 mm |
991 Gs
99.1 mT
|
0.32 kg / 318.7 g
3.1 N
|
słaby uchwyt |
| 10 mm |
313 Gs
31.3 mT
|
0.03 kg / 31.8 g
0.3 N
|
słaby uchwyt |
| 15 mm |
125 Gs
12.5 mT
|
0.01 kg / 5.1 g
0.0 N
|
słaby uchwyt |
| 20 mm |
61 Gs
6.1 mT
|
0.00 kg / 1.2 g
0.0 N
|
słaby uchwyt |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
MW 12x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.50 kg / 498.0 g
4.9 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 262.0 g
2.6 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MW 12x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.75 kg / 747.0 g
7.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.50 kg / 498.0 g
4.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 249.0 g
2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.25 kg / 1245.0 g
12.2 N
|
MW 12x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 249.0 g
2.4 N
|
| 1 mm |
|
0.62 kg / 622.5 g
6.1 N
|
| 2 mm |
|
1.25 kg / 1245.0 g
12.2 N
|
| 5 mm |
|
2.49 kg / 2490.0 g
24.4 N
|
| 10 mm |
|
2.49 kg / 2490.0 g
24.4 N
|
MW 12x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.49 kg / 2490.0 g
24.4 N
|
OK |
| 40 °C | -2.2% |
2.44 kg / 2435.2 g
23.9 N
|
OK |
| 60 °C | -4.4% |
2.38 kg / 2380.4 g
23.4 N
|
|
| 80 °C | -6.6% |
2.33 kg / 2325.7 g
22.8 N
|
|
| 100 °C | -28.8% |
1.77 kg / 1772.9 g
17.4 N
|
MW 12x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.35 kg / 5349 g
52.5 N
4 377 Gs
|
N/A |
| 1 mm |
4.75 kg / 4747 g
46.6 N
5 218 Gs
|
4.27 kg / 4272 g
41.9 N
~0 Gs
|
| 2 mm |
4.08 kg / 4083 g
40.1 N
4 840 Gs
|
3.67 kg / 3675 g
36.0 N
~0 Gs
|
| 3 mm |
3.42 kg / 3425 g
33.6 N
4 433 Gs
|
3.08 kg / 3082 g
30.2 N
~0 Gs
|
| 5 mm |
2.27 kg / 2271 g
22.3 N
3 610 Gs
|
2.04 kg / 2044 g
20.1 N
~0 Gs
|
| 10 mm |
0.68 kg / 685 g
6.7 N
1 982 Gs
|
0.62 kg / 616 g
6.0 N
~0 Gs
|
| 20 mm |
0.07 kg / 68 g
0.7 N
626 Gs
|
0.06 kg / 61 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
67 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
MW 12x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
MW 12x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.83 km/h
(8.84 m/s)
|
0.10 J | |
| 30 mm |
54.69 km/h
(15.19 m/s)
|
0.29 J | |
| 50 mm |
70.61 km/h
(19.61 m/s)
|
0.49 J | |
| 100 mm |
99.85 km/h
(27.74 m/s)
|
0.98 J |
MW 12x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MW 12x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 483 Mx | 34.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
MW 12x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.49 kg | Standard |
| Woda (dno rzeki) |
2.85 kg
(+0.36 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (NiCuNi, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Maksymalny udźwig magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- z płaszczyzną wolną od rys
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po blasze jest z reguły kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig określano używając gładkiej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża udźwig.
Zakaz zabawy
Artykuł tylko dla osób pełnoletnich. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj z dala od dzieci i zwierząt.
Elektronika precyzyjna
Ważna informacja: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Zachowaj odpowiednią odległość od komórki, tabletu i urządzeń GPS.
Zagrożenie życia
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione urządzenia wspomagające.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Łatwopalność
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Ryzyko uczulenia
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup magnesy powlekane tworzywem.
Ryzyko pęknięcia
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na drobiny.
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Pole magnetyczne a elektronika
Unikaj zbliżania magnesów do portfela, komputera czy ekranu. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Siła neodymu
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
