MW 12x3 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010018
GTIN/EAN: 5906301810179
Średnica Ø
12 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
2.54 g
Kierunek magnesowania
↑ osiowy
Udźwig
2.49 kg / 24.43 N
Indukcja magnetyczna
277.09 mT / 2771 Gs
Powłoka
[NiCuNi] nikiel
1.648 ZŁ z VAT / szt. + cena za transport
1.340 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
ewentualnie zostaw wiadomość za pomocą
formularz
na naszej stronie.
Masę i formę magnesu neodymowego wyliczysz u nas w
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne - MW 12x3 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 12x3 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010018 |
| GTIN/EAN | 5906301810179 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 12 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 2.54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 2.49 kg / 24.43 N |
| Indukcja magnetyczna ~ ? | 277.09 mT / 2771 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - parametry techniczne
Przedstawione wartości stanowią rezultat kalkulacji inżynierskiej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MW 12x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2770 Gs
277.0 mT
|
2.49 kg / 2490.0 g
24.4 N
|
uwaga |
| 1 mm |
2420 Gs
242.0 mT
|
1.90 kg / 1900.6 g
18.6 N
|
niskie ryzyko |
| 2 mm |
2009 Gs
200.9 mT
|
1.31 kg / 1309.4 g
12.8 N
|
niskie ryzyko |
| 3 mm |
1611 Gs
161.1 mT
|
0.84 kg / 842.7 g
8.3 N
|
niskie ryzyko |
| 5 mm |
991 Gs
99.1 mT
|
0.32 kg / 318.7 g
3.1 N
|
niskie ryzyko |
| 10 mm |
313 Gs
31.3 mT
|
0.03 kg / 31.8 g
0.3 N
|
niskie ryzyko |
| 15 mm |
125 Gs
12.5 mT
|
0.01 kg / 5.1 g
0.0 N
|
niskie ryzyko |
| 20 mm |
61 Gs
6.1 mT
|
0.00 kg / 1.2 g
0.0 N
|
niskie ryzyko |
| 30 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
| 50 mm |
5 Gs
0.5 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (pion)
MW 12x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.50 kg / 498.0 g
4.9 N
|
| 1 mm | Stal (~0.2) |
0.38 kg / 380.0 g
3.7 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 262.0 g
2.6 N
|
| 3 mm | Stal (~0.2) |
0.17 kg / 168.0 g
1.6 N
|
| 5 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MW 12x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.75 kg / 747.0 g
7.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.50 kg / 498.0 g
4.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 249.0 g
2.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.25 kg / 1245.0 g
12.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MW 12x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 249.0 g
2.4 N
|
| 1 mm |
|
0.62 kg / 622.5 g
6.1 N
|
| 2 mm |
|
1.25 kg / 1245.0 g
12.2 N
|
| 5 mm |
|
2.49 kg / 2490.0 g
24.4 N
|
| 10 mm |
|
2.49 kg / 2490.0 g
24.4 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MW 12x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.49 kg / 2490.0 g
24.4 N
|
OK |
| 40 °C | -2.2% |
2.44 kg / 2435.2 g
23.9 N
|
OK |
| 60 °C | -4.4% |
2.38 kg / 2380.4 g
23.4 N
|
|
| 80 °C | -6.6% |
2.33 kg / 2325.7 g
22.8 N
|
|
| 100 °C | -28.8% |
1.77 kg / 1772.9 g
17.4 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MW 12x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
5.35 kg / 5349 g
52.5 N
4 377 Gs
|
N/A |
| 1 mm |
4.75 kg / 4747 g
46.6 N
5 218 Gs
|
4.27 kg / 4272 g
41.9 N
~0 Gs
|
| 2 mm |
4.08 kg / 4083 g
40.1 N
4 840 Gs
|
3.67 kg / 3675 g
36.0 N
~0 Gs
|
| 3 mm |
3.42 kg / 3425 g
33.6 N
4 433 Gs
|
3.08 kg / 3082 g
30.2 N
~0 Gs
|
| 5 mm |
2.27 kg / 2271 g
22.3 N
3 610 Gs
|
2.04 kg / 2044 g
20.1 N
~0 Gs
|
| 10 mm |
0.68 kg / 685 g
6.7 N
1 982 Gs
|
0.62 kg / 616 g
6.0 N
~0 Gs
|
| 20 mm |
0.07 kg / 68 g
0.7 N
626 Gs
|
0.06 kg / 61 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
67 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MW 12x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 12x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.83 km/h
(8.84 m/s)
|
0.10 J | |
| 30 mm |
54.69 km/h
(15.19 m/s)
|
0.29 J | |
| 50 mm |
70.61 km/h
(19.61 m/s)
|
0.49 J | |
| 100 mm |
99.85 km/h
(27.74 m/s)
|
0.98 J |
Tabela 9: Specyfikacja ochrony powierzchni
MW 12x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MW 12x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 483 Mx | 34.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MW 12x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 2.49 kg | Standard |
| Woda (dno rzeki) |
2.85 kg
(+0.36 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) znacząco osłabia udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o niezauważalny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co gwarantuje ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- której grubość to min. 10 mm
- o szlifowanej powierzchni styku
- przy bezpośrednim styku (bez zanieczyszczeń)
- przy pionowym wektorze siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, brud, powietrze) przerywa obwód magnetyczny, co redukuje moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka stal powoduje nasycenie magnetyczne, przez co część mocy ucieka w powietrzu.
- Skład chemiczny podłoża – stal miękka daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Siłę trzymania mierzy się na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy działaniu siły na zsuwanie udźwig jest mniejszy nawet pięć razy. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Bezpieczna praca z magnesami neodymowymi
Rozruszniki serca
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Tylko dla dorosłych
Neodymowe magnesy to nie zabawki. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga natychmiastowej operacji.
Niklowa powłoka a alergia
Niektóre osoby ma nadwrażliwość na nikiel, którym powlekane są standardowo nasze produkty. Częste dotykanie może powodować zaczerwienienie skóry. Sugerujemy noszenie rękawic bezlateksowych.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Zagrożenie fizyczne
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Łamliwość magnesów
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Zasady obsługi
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Temperatura pracy
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Karty i dyski
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Wpływ na smartfony
Moduły GPS i smartfony są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć sensory w Twoim telefonie.
