MW 10x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010012
GTIN/EAN: 5906301810117
Średnica Ø
10 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
3.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.38 kg / 33.12 N
Indukcja magnetyczna
475.73 mT / 4757 Gs
Powłoka
[NiCuNi] nikiel
1.045 ZŁ z VAT / szt. + cena za transport
0.850 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie daj znać poprzez
formularz zgłoszeniowy
na naszej stronie.
Moc a także kształt magnesów sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Szczegóły techniczne - MW 10x6 / N38 - magnes neodymowy walcowy
Specyfikacja / charakterystyka - MW 10x6 / N38 - magnes neodymowy walcowy
| właściwości | wartości |
|---|---|
| Nr kat. | 010012 |
| GTIN/EAN | 5906301810117 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Średnica Ø | 10 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 3.53 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 3.38 kg / 33.12 N |
| Indukcja magnetyczna ~ ? | 475.73 mT / 4757 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione wartości są bezpośredni efekt symulacji inżynierskiej. Wyniki bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - spadek mocy
MW 10x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4754 Gs
475.4 mT
|
3.38 kg / 3380.0 g
33.2 N
|
średnie ryzyko |
| 1 mm |
3829 Gs
382.9 mT
|
2.19 kg / 2193.1 g
21.5 N
|
średnie ryzyko |
| 2 mm |
2955 Gs
295.5 mT
|
1.31 kg / 1306.0 g
12.8 N
|
bezpieczny |
| 3 mm |
2230 Gs
223.0 mT
|
0.74 kg / 743.7 g
7.3 N
|
bezpieczny |
| 5 mm |
1260 Gs
126.0 mT
|
0.24 kg / 237.5 g
2.3 N
|
bezpieczny |
| 10 mm |
372 Gs
37.2 mT
|
0.02 kg / 20.7 g
0.2 N
|
bezpieczny |
| 15 mm |
150 Gs
15.0 mT
|
0.00 kg / 3.3 g
0.0 N
|
bezpieczny |
| 20 mm |
74 Gs
7.4 mT
|
0.00 kg / 0.8 g
0.0 N
|
bezpieczny |
| 30 mm |
25 Gs
2.5 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (pion)
MW 10x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.68 kg / 676.0 g
6.6 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 438.0 g
4.3 N
|
| 2 mm | Stal (~0.2) |
0.26 kg / 262.0 g
2.6 N
|
| 3 mm | Stal (~0.2) |
0.15 kg / 148.0 g
1.5 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 48.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MW 10x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.01 kg / 1014.0 g
9.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.68 kg / 676.0 g
6.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.34 kg / 338.0 g
3.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
1.69 kg / 1690.0 g
16.6 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MW 10x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.34 kg / 338.0 g
3.3 N
|
| 1 mm |
|
0.85 kg / 845.0 g
8.3 N
|
| 2 mm |
|
1.69 kg / 1690.0 g
16.6 N
|
| 5 mm |
|
3.38 kg / 3380.0 g
33.2 N
|
| 10 mm |
|
3.38 kg / 3380.0 g
33.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MW 10x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.38 kg / 3380.0 g
33.2 N
|
OK |
| 40 °C | -2.2% |
3.31 kg / 3305.6 g
32.4 N
|
OK |
| 60 °C | -4.4% |
3.23 kg / 3231.3 g
31.7 N
|
OK |
| 80 °C | -6.6% |
3.16 kg / 3156.9 g
31.0 N
|
|
| 100 °C | -28.8% |
2.41 kg / 2406.6 g
23.6 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 10x6 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
10.94 kg / 10942 g
107.3 N
5 711 Gs
|
N/A |
| 1 mm |
8.94 kg / 8942 g
87.7 N
8 595 Gs
|
8.05 kg / 8048 g
78.9 N
~0 Gs
|
| 2 mm |
7.10 kg / 7100 g
69.6 N
7 658 Gs
|
6.39 kg / 6390 g
62.7 N
~0 Gs
|
| 3 mm |
5.52 kg / 5522 g
54.2 N
6 754 Gs
|
4.97 kg / 4970 g
48.8 N
~0 Gs
|
| 5 mm |
3.20 kg / 3201 g
31.4 N
5 143 Gs
|
2.88 kg / 2881 g
28.3 N
~0 Gs
|
| 10 mm |
0.77 kg / 769 g
7.5 N
2 520 Gs
|
0.69 kg / 692 g
6.8 N
~0 Gs
|
| 20 mm |
0.07 kg / 67 g
0.7 N
745 Gs
|
0.06 kg / 60 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 1 g
0.0 N
83 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MW 10x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 5.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MW 10x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
31.33 km/h
(8.70 m/s)
|
0.13 J | |
| 30 mm |
54.05 km/h
(15.01 m/s)
|
0.40 J | |
| 50 mm |
69.78 km/h
(19.38 m/s)
|
0.66 J | |
| 100 mm |
98.69 km/h
(27.41 m/s)
|
1.33 J |
Tabela 9: Odporność na korozję
MW 10x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MW 10x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 3 767 Mx | 37.7 µWb |
| Współczynnik Pc | 0.66 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MW 10x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 3.38 kg | Standard |
| Woda (dno rzeki) |
3.87 kg
(+0.49 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres blisko 10 lat gubią nie więcej niż ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich ogromny plus w inżynierii.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- o idealnie gładkiej powierzchni styku
- przy bezpośrednim styku (brak zanieczyszczeń)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w temperaturze pokojowej
Co wpływa na udźwig w praktyce
- Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast zamienić się w udźwig.
- Rodzaj stali – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Stan powierzchni – powierzchnie gładkie zapewniają maksymalny styk, co zwiększa siłę. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Ryzyko rozmagnesowania
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i udźwig.
Moc przyciągania
Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z impetem, często szybciej niż zdążysz zareagować.
Kruchy spiek
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie rzucaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Zagrożenie fizyczne
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Wpływ na zdrowie
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione implanty elektroniczne.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe generują pole, które mylą elektronikę precyzyjną. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
Uwaga: zadławienie
Neodymowe magnesy nie są przeznaczone dla dzieci. Połknięcie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, zegarki mechaniczne).
Nadwrażliwość na metale
Część populacji ma nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać wysypkę. Wskazane jest używanie rękawic bezlateksowych.
Ryzyko pożaru
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż może to wywołać pożar.
