MW 10x6 / N38 - magnes neodymowy walcowy
magnes neodymowy walcowy
Numer katalogowy 010012
GTIN: 5906301810117
Średnica Ø [±0,1 mm]
10 mm
Wysokość [±0,1 mm]
6 mm
Waga
3.53 g
Kierunek magnesowania
↑ osiowy
Udźwig
3.32 kg / 32.56 N
Indukcja magnetyczna
475.73 mT
Powłoka
[NiCuNi] nikiel
1.045 ZŁ z VAT / szt. + cena za transport
0.850 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń do nas
+48 22 499 98 98
albo zostaw wiadomość przez
formularz zgłoszeniowy
na naszej stronie.
Masę a także kształt magnesu zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Własności magnetyczne materiału N38
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
Porady zakupowe
Zalety i wady neodymowych magnesów NdFeB.
Neodymy to nie tylko siła, ale także inne kluczowe cechy, w tym::
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Mimo zalet, posiadają też wady:
- Delikatność mechaniczna to ich słaba strona. Łatwo ulegają uszkodzeniu przy zderzeniu, dlatego warto stosować obudowy lub montaż w stali.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Najwyższa nośność magnesu – co się na to składa?
Informacja o udźwigu to rezultat pomiaru dla warunków idealnego styku, obejmującej:
- przy użyciu blachy ze specjalnej stali pomiarowej, zapewniającej maksymalne skupienie pola
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- o wypolerowanej powierzchni styku
- w warunkach idealnego przylegania (metal do metalu)
- podczas odrywania w kierunku pionowym do płaszczyzny mocowania
- w standardowej temperaturze otoczenia
Czynniki determinujące udźwig w warunkach realnych
W rzeczywistych zastosowaniach, rzeczywisty udźwig jest determinowana przez kilku kluczowych aspektów, wymienionych od kluczowych:
- Dystans – obecność ciała obcego (rdza, brud, szczelina) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają efekt przyciągania.
- Struktura powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
* Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza siłę trzymania.
Zasady BHP dla użytkowników magnesów
Zakaz zabawy
Silne magnesy to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Uszkodzenia czujników
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Pył jest łatwopalny
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Temperatura pracy
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko uczulenia
Niektóre osoby ma alergię kontaktową na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może wywołać silną reakcję alergiczną. Zalecamy noszenie rękawic bezlateksowych.
Niszczenie danych
Potężne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Uwaga na odpryski
Magnesy neodymowe to spiek proszkowy, co oznacza, że są bardzo kruche. Upadek dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Siła zgniatająca
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Uwaga medyczna
Osoby z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować pracę implantu.
Zachowaj ostrożność!
Więcej informacji o zagrożeniach w artykule: Niebezpieczeństwo pracy z magnesami.
