Neodymy – szeroki wybór kształtów

Szukasz potężnej mocy w małym rozmiarze? Oferujemy kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do użytku w domu, warsztatu oraz zadań przemysłowych. Sprawdź naszą ofertę dostępne od ręki.

poznaj pełną ofertę

Zestawy do magnet fishing (poszukiwaczy)

Zacznij swoje hobby związaną z eksploracją dna! Nasze specjalistyczne uchwyty (F200, F400) to pewność chwytu i ogromnego udźwigu. Nierdzewna konstrukcja oraz wzmocnione liny sprawdzą się w każdej wodzie.

znajdź swój magnes do wody

Mocowania magnetyczne dla przemysłu

Sprawdzone rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (M8, M10, M12) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy mocowaniu lamp, sensorów oraz banerów.

zobacz dostępne gwinty

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MW 8x1.5 / N38 - magnes neodymowy walcowy

magnes neodymowy walcowy

Numer katalogowy 010101

GTIN/EAN: 5906301811008

5.00

Średnica Ø

8 mm [±0,1 mm]

Wysokość

1.5 mm [±0,1 mm]

Waga

0.57 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.74 kg / 7.27 N

Indukcja magnetyczna

217.52 mT / 2175 Gs

Powłoka

[NiCuNi] nikiel

0.455 z VAT / szt. + cena za transport

0.370 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.370 ZŁ
0.455 ZŁ
cena od 1700 szt.
0.348 ZŁ
0.428 ZŁ
cena od 6800 szt.
0.326 ZŁ
0.400 ZŁ
Szukasz zniżki?

Skontaktuj się z nami telefonicznie +48 22 499 98 98 lub daj znać przez formularz na stronie kontakt.
Moc a także formę magnesów wyliczysz dzięki naszemu naszym kalkulatorze magnetycznym.

Wysyłka tego samego dnia dla zamówień do godz. 14:00.

Dane techniczne produktu - MW 8x1.5 / N38 - magnes neodymowy walcowy

Specyfikacja / charakterystyka - MW 8x1.5 / N38 - magnes neodymowy walcowy

właściwości
właściwości wartości
Nr kat. 010101
GTIN/EAN 5906301811008
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Średnica Ø 8 mm [±0,1 mm]
Wysokość 1.5 mm [±0,1 mm]
Waga 0.57 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.74 kg / 7.27 N
Indukcja magnetyczna ~ ? 217.52 mT / 2175 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MW 8x1.5 / N38 - magnes neodymowy walcowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - raport

Niniejsze informacje są wynik analizy matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MW 8x1.5 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 2174 Gs
217.4 mT
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
bezpieczny
1 mm 1782 Gs
178.2 mT
0.50 kg / 1.10 lbs
497.3 g / 4.9 N
bezpieczny
2 mm 1310 Gs
131.0 mT
0.27 kg / 0.59 lbs
268.7 g / 2.6 N
bezpieczny
3 mm 914 Gs
91.4 mT
0.13 kg / 0.29 lbs
130.8 g / 1.3 N
bezpieczny
5 mm 439 Gs
43.9 mT
0.03 kg / 0.07 lbs
30.2 g / 0.3 N
bezpieczny
10 mm 99 Gs
9.9 mT
0.00 kg / 0.00 lbs
1.5 g / 0.0 N
bezpieczny
15 mm 35 Gs
3.5 mT
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
bezpieczny
20 mm 16 Gs
1.6 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
30 mm 5 Gs
0.5 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny
50 mm 1 Gs
0.1 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
bezpieczny

Tabela 2: Siła równoległa zsuwania (pion)
MW 8x1.5 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.15 kg / 0.33 lbs
148.0 g / 1.5 N
1 mm Stal (~0.2) 0.10 kg / 0.22 lbs
100.0 g / 1.0 N
2 mm Stal (~0.2) 0.05 kg / 0.12 lbs
54.0 g / 0.5 N
3 mm Stal (~0.2) 0.03 kg / 0.06 lbs
26.0 g / 0.3 N
5 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MW 8x1.5 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.22 kg / 0.49 lbs
222.0 g / 2.2 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.15 kg / 0.33 lbs
148.0 g / 1.5 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.37 kg / 0.82 lbs
370.0 g / 3.6 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MW 8x1.5 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
1 mm
25%
0.19 kg / 0.41 lbs
185.0 g / 1.8 N
2 mm
50%
0.37 kg / 0.82 lbs
370.0 g / 3.6 N
3 mm
75%
0.55 kg / 1.22 lbs
555.0 g / 5.4 N
5 mm
100%
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
10 mm
100%
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
11 mm
100%
0.74 kg / 1.63 lbs
740.0 g / 7.3 N
12 mm
100%
0.74 kg / 1.63 lbs
740.0 g / 7.3 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MW 8x1.5 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 0.74 kg / 1.63 lbs
740.0 g / 7.3 N
OK
40 °C -2.2% 0.72 kg / 1.60 lbs
723.7 g / 7.1 N
OK
60 °C -4.4% 0.71 kg / 1.56 lbs
707.4 g / 6.9 N
80 °C -6.6% 0.69 kg / 1.52 lbs
691.2 g / 6.8 N
100 °C -28.8% 0.53 kg / 1.16 lbs
526.9 g / 5.2 N

Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MW 8x1.5 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 1.46 kg / 3.23 lbs
3 712 Gs
0.22 kg / 0.48 lbs
220 g / 2.2 N
N/A
1 mm 1.24 kg / 2.74 lbs
4 007 Gs
0.19 kg / 0.41 lbs
187 g / 1.8 N
1.12 kg / 2.47 lbs
~0 Gs
2 mm 0.98 kg / 2.17 lbs
3 565 Gs
0.15 kg / 0.33 lbs
148 g / 1.4 N
0.89 kg / 1.95 lbs
~0 Gs
3 mm 0.74 kg / 1.63 lbs
3 086 Gs
0.11 kg / 0.24 lbs
111 g / 1.1 N
0.66 kg / 1.46 lbs
~0 Gs
5 mm 0.37 kg / 0.82 lbs
2 196 Gs
0.06 kg / 0.12 lbs
56 g / 0.5 N
0.34 kg / 0.74 lbs
~0 Gs
10 mm 0.06 kg / 0.13 lbs
878 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.05 kg / 0.12 lbs
~0 Gs
20 mm 0.00 kg / 0.01 lbs
199 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
17 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
10 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
6 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
4 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
3 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
2 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MW 8x1.5 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 3.0 cm
Implant słuchowy 10 Gs (1.0 mT) 2.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 2.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.5 cm
Immobilizer 50 Gs (5.0 mT) 1.5 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MW 8x1.5 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 36.39 km/h
(10.11 m/s)
0.03 J
30 mm 62.94 km/h
(17.48 m/s)
0.09 J
50 mm 81.25 km/h
(22.57 m/s)
0.15 J
100 mm 114.91 km/h
(31.92 m/s)
0.29 J

Tabela 9: Specyfikacja ochrony powierzchni
MW 8x1.5 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Flux)
MW 8x1.5 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 1 285 Mx 12.9 µWb
Współczynnik Pc 0.27 Niski (Płaski)

Tabela 11: Hydrostatyka i wyporność
MW 8x1.5 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.74 kg Standard
Woda (dno rzeki) 0.85 kg
(+0.11 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Udźwig w pionie

*Ważne: Na pionowej ścianie magnes zachowa jedynie ułamek siły prostopadłej.

2. Nasycenie magnetyczne

*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.

3. Praca w cieple

*Dla materiału N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.27

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 010101-2026
Kalkulator miar
Udźwig magnesu

Indukcja magnetyczna

Sprawdź inne oferty

Prezentowany produkt to ekstremalnie mocny magnes w kształcie walca, wyprodukowany z trwałego materiału NdFeB, co przy wymiarach Ø8x1.5 mm gwarantuje najwyższą gęstość energii. Model MW 8x1.5 / N38 charakteryzuje się wysoką powtarzalnością wymiarową oraz przemysłową jakością wykonania, dzięki czemu jest to rozwiązanie doskonałe dla profesjonalnych inżynierów i konstruktorów. Jako walec magnetyczny o imponującej sile (ok. 0.74 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce, co zapewnia błyskawiczną realizację zamówienia. Dodatkowo, jego trójwarstwowa powłoka Ni-Cu-Ni skutecznie zabezpiecza go przed korozją w standardowych warunkach pracy, gwarantując estetyczny wygląd i trwałość przez lata.
Ten model jest stworzony do budowy silników elektrycznych, zaawansowanych sensorów Halla oraz wydajnych separatorów magnetycznych, gdzie liczy się maksymalna indukcja na małej powierzchni. Dzięki dużej mocy 7.27 N przy wadze zaledwie 0.57 g, ten magnes cylindryczny jest niezastąpiony w miniaturowych urządzeniach oraz wszędzie tam, gdzie liczy się każdy gram.
Ponieważ nasze magnesy mają bardzo precyzyjne wymiary, najlepszą metodą jest wklejanie ich w otwory o średnicy minimalnie większej (np. 8,1 mm) przy użyciu klejów epoksydowych. Dla zapewnienia długotrwałej wytrzymałości w automatyce, stosuje się specjalistyczne kleje przemysłowe, które są bezpieczne dla niklu i wypełniają szczelinę, gwarantując trwałość połączenia.
Magnesy N38 są wystarczająco silne do 90% zastosowań w automatyce i budowie maszyn, gdzie nie jest wymagana skrajna miniaturyzacja przy zachowaniu maksymalnej siły. Jeśli potrzebujesz najsilniejszych magnesów w tej samej objętości (Ø8x1.5), skontaktuj się z nami w sprawie wyższych klas (np. N50, N52), jednak N38 jest standardem w ciągłej sprzedaży w naszym sklepie.
Model ten charakteryzuje się wymiarami Ø8x1.5 mm, co przy wadze 0.57 g czyni go elementem o wysokiej gęstości energii magnetycznej. Wartość 7.27 N oznacza, że magnes jest w stanie utrzymać ciężar wielokrotnie przewyższający jego masę własną 0.57 g. Produkt posiada powłokę [NiCuNi], która chroni powierzchnię przed czynnikami zewnętrznymi, nadając mu estetyczny, srebrzysty połysk.
Ten magnes walcowy jest magnesowany osiowo (wzdłuż wysokości 1.5 mm), co oznacza, że bieguny N i S znajdują się na płaskich, okrągłych powierzchniach. Taki układ jest standardowy przy łączeniu magnesów w stosy (np. w filtrach) lub przy montażu w gniazdach na dnie otworu. Na zamówienie możemy wykonać również wersje magnesowane po średnicy, jeśli Twój projekt tego wymaga.

Wady oraz zalety neodymowych magnesów Nd2Fe14B.

Korzyści

Neodymy to nie tylko moc przyciągania, ale także inne istotne właściwości, takie jak::
  • Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
  • Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
  • Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.

Wady

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Ze względu na kruchość, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
  • Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Charakterystyka udźwigu

Maksymalny udźwig magnesuod czego zależy?

Parametr siły jest wynikiem testu laboratoryjnego przeprowadzonego w warunkach wzorcowych:
  • z użyciem blachy ze miękkiej stali, pełniącej rolę element zamykający obwód
  • której grubość wynosi ok. 10 mm
  • z płaszczyzną oczyszczoną i gładką
  • przy zerowej szczelinie (brak zanieczyszczeń)
  • przy prostopadłym wektorze siły (kąt 90 stopni)
  • w temperaturze pokojowej

Czynniki determinujące udźwig w warunkach realnych

Trzeba mieć na uwadze, że siła w aplikacji będzie inne w zależności od poniższych elementów, zaczynając od najistotniejszych:
  • Szczelina między magnesem a stalą – każdy milimetr odległości (spowodowany np. lakierem lub brudem) zmniejsza siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
  • Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – nie każda stal reaguje tak samo. Wysoka zawartość węgla osłabiają efekt przyciągania.
  • Jakość powierzchni – im gładsza i bardziej polerowana powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
  • Wpływ temperatury – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.

Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.

BHP przy magnesach
Łatwopalność

Proszek generowany podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.

Kruchość materiału

Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozpryśnięcie na drobne kawałki.

Nośniki danych

Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).

Uszkodzenia ciała

Zagrożenie fizyczne: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.

Nie przegrzewaj magnesów

Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).

Moc przyciągania

Bądź ostrożny. Magnesy neodymowe przyciągają z daleka i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.

Zagrożenie dla nawigacji

Moduły GPS i smartfony są niezwykle podatne na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.

Ostrzeżenie dla sercowców

Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.

Zakaz zabawy

Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Ryzyko uczulenia

Badania wskazują, że nikiel (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, unikaj trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.

Ważne! Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98