MPL 40x5x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020402
GTIN/EAN: 5906301811916
Długość
40 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.33 kg / 71.91 N
Indukcja magnetyczna
348.83 mT / 3488 Gs
Powłoka
[NiCuNi] nikiel
6.65 ZŁ z VAT / szt. + cena za transport
5.41 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub napisz za pomocą
formularz
przez naszą stronę.
Udźwig a także budowę magnesów neodymowych zobaczysz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane techniczne produktu - MPL 40x5x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x5x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020402 |
| GTIN/EAN | 5906301811916 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.33 kg / 71.91 N |
| Indukcja magnetyczna ~ ? | 348.83 mT / 3488 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią wynik analizy fizycznej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 40x5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3485 Gs
348.5 mT
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
średnie ryzyko |
| 1 mm |
2529 Gs
252.9 mT
|
3.86 kg / 8.51 lbs
3859.9 g / 37.9 N
|
średnie ryzyko |
| 2 mm |
1741 Gs
174.1 mT
|
1.83 kg / 4.03 lbs
1829.7 g / 17.9 N
|
bezpieczny |
| 3 mm |
1217 Gs
121.7 mT
|
0.89 kg / 1.97 lbs
893.7 g / 8.8 N
|
bezpieczny |
| 5 mm |
664 Gs
66.4 mT
|
0.27 kg / 0.59 lbs
265.9 g / 2.6 N
|
bezpieczny |
| 10 mm |
235 Gs
23.5 mT
|
0.03 kg / 0.07 lbs
33.5 g / 0.3 N
|
bezpieczny |
| 15 mm |
116 Gs
11.6 mT
|
0.01 kg / 0.02 lbs
8.2 g / 0.1 N
|
bezpieczny |
| 20 mm |
67 Gs
6.7 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
bezpieczny |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 40x5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 3.23 lbs
1466.0 g / 14.4 N
|
| 1 mm | Stal (~0.2) |
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.18 kg / 0.39 lbs
178.0 g / 1.7 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 40x5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.20 kg / 4.85 lbs
2199.0 g / 21.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 3.23 lbs
1466.0 g / 14.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.73 kg / 1.62 lbs
733.0 g / 7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.67 kg / 8.08 lbs
3665.0 g / 36.0 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 40x5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 1.62 lbs
733.0 g / 7.2 N
|
| 1 mm |
|
1.83 kg / 4.04 lbs
1832.5 g / 18.0 N
|
| 2 mm |
|
3.67 kg / 8.08 lbs
3665.0 g / 36.0 N
|
| 3 mm |
|
5.50 kg / 12.12 lbs
5497.5 g / 53.9 N
|
| 5 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
| 10 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
| 11 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
| 12 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 40x5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
OK |
| 40 °C | -2.2% |
7.17 kg / 15.80 lbs
7168.7 g / 70.3 N
|
OK |
| 60 °C | -4.4% |
7.01 kg / 15.45 lbs
7007.5 g / 68.7 N
|
|
| 80 °C | -6.6% |
6.85 kg / 15.09 lbs
6846.2 g / 67.2 N
|
|
| 100 °C | -28.8% |
5.22 kg / 11.51 lbs
5219.0 g / 51.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 40x5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.97 kg / 33.01 lbs
4 697 Gs
|
2.25 kg / 4.95 lbs
2246 g / 22.0 N
|
N/A |
| 1 mm |
11.16 kg / 24.61 lbs
6 017 Gs
|
1.67 kg / 3.69 lbs
1674 g / 16.4 N
|
10.04 kg / 22.15 lbs
~0 Gs
|
| 2 mm |
7.88 kg / 17.38 lbs
5 058 Gs
|
1.18 kg / 2.61 lbs
1183 g / 11.6 N
|
7.10 kg / 15.64 lbs
~0 Gs
|
| 3 mm |
5.44 kg / 11.99 lbs
4 201 Gs
|
0.82 kg / 1.80 lbs
816 g / 8.0 N
|
4.90 kg / 10.79 lbs
~0 Gs
|
| 5 mm |
2.59 kg / 5.71 lbs
2 899 Gs
|
0.39 kg / 0.86 lbs
389 g / 3.8 N
|
2.33 kg / 5.14 lbs
~0 Gs
|
| 10 mm |
0.54 kg / 1.20 lbs
1 328 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.08 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.15 lbs
471 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
83 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 40x5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
40.82 km/h
(11.34 m/s)
|
0.29 J | |
| 30 mm |
70.50 km/h
(19.58 m/s)
|
0.86 J | |
| 50 mm |
91.02 km/h
(25.28 m/s)
|
1.44 J | |
| 100 mm |
128.71 km/h
(35.75 m/s)
|
2.88 J |
Tabela 9: Odporność na korozję
MPL 40x5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 123 Mx | 51.2 µWb |
| Współczynnik Pc | 0.27 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.33 kg | Standard |
| Woda (dno rzeki) |
8.39 kg
(+1.06 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.27
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi jedynie ~1% (wg testów).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Dają się łatwo formować do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Stanowią kluczowy element w innowacjach, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni styku
- bez żadnej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność ciała obcego (rdza, taśma, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – maksymalny parametr uzyskujemy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po blasze jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Żeliwo mogą generować mniejszy udźwig.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Warto sprawdzić limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą redukuje nośność.
Zasady BHP dla użytkowników magnesów
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Ochrona urządzeń
Nie przykładaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może trwale uszkodzić te urządzenia oraz wymazać paski magnetyczne z kart.
Dla uczulonych
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.
Elektronika precyzyjna
Silne pole magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i nawigacjach GPS. Trzymaj z dala magnesów od telefonu, aby nie uszkodzić czujników.
Uwaga: zadławienie
Zawsze zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są nieodwracalne.
Uwaga na odpryski
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.
Ochrona dłoni
Chroń dłonie. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Świadome użytkowanie
Stosuj magnesy z rozwagą. Ich ogromna siła może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Wpływ na zdrowie
Zagrożenie życia: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
