MPL 40x5x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020402
GTIN/EAN: 5906301811916
Długość
40 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.33 kg / 71.91 N
Indukcja magnetyczna
348.83 mT / 3488 Gs
Powłoka
[NiCuNi] nikiel
6.65 ZŁ z VAT / szt. + cena za transport
5.41 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub skontaktuj się poprzez
formularz zapytania
na stronie kontakt.
Właściwości i kształt magnesów skontrolujesz dzięki naszemu
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Karta produktu - MPL 40x5x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x5x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020402 |
| GTIN/EAN | 5906301811916 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.33 kg / 71.91 N |
| Indukcja magnetyczna ~ ? | 348.83 mT / 3488 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze dane stanowią wynik kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 40x5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3485 Gs
348.5 mT
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
mocny |
| 1 mm |
2529 Gs
252.9 mT
|
3.86 kg / 8.51 lbs
3859.9 g / 37.9 N
|
mocny |
| 2 mm |
1741 Gs
174.1 mT
|
1.83 kg / 4.03 lbs
1829.7 g / 17.9 N
|
bezpieczny |
| 3 mm |
1217 Gs
121.7 mT
|
0.89 kg / 1.97 lbs
893.7 g / 8.8 N
|
bezpieczny |
| 5 mm |
664 Gs
66.4 mT
|
0.27 kg / 0.59 lbs
265.9 g / 2.6 N
|
bezpieczny |
| 10 mm |
235 Gs
23.5 mT
|
0.03 kg / 0.07 lbs
33.5 g / 0.3 N
|
bezpieczny |
| 15 mm |
116 Gs
11.6 mT
|
0.01 kg / 0.02 lbs
8.2 g / 0.1 N
|
bezpieczny |
| 20 mm |
67 Gs
6.7 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
bezpieczny |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
bezpieczny |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 40x5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 3.23 lbs
1466.0 g / 14.4 N
|
| 1 mm | Stal (~0.2) |
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 0.81 lbs
366.0 g / 3.6 N
|
| 3 mm | Stal (~0.2) |
0.18 kg / 0.39 lbs
178.0 g / 1.7 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 0.12 lbs
54.0 g / 0.5 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 40x5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.20 kg / 4.85 lbs
2199.0 g / 21.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 3.23 lbs
1466.0 g / 14.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.73 kg / 1.62 lbs
733.0 g / 7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.67 kg / 8.08 lbs
3665.0 g / 36.0 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 40x5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 1.62 lbs
733.0 g / 7.2 N
|
| 1 mm |
|
1.83 kg / 4.04 lbs
1832.5 g / 18.0 N
|
| 2 mm |
|
3.67 kg / 8.08 lbs
3665.0 g / 36.0 N
|
| 3 mm |
|
5.50 kg / 12.12 lbs
5497.5 g / 53.9 N
|
| 5 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
| 10 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
| 11 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
| 12 mm |
|
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 40x5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.33 kg / 16.16 lbs
7330.0 g / 71.9 N
|
OK |
| 40 °C | -2.2% |
7.17 kg / 15.80 lbs
7168.7 g / 70.3 N
|
OK |
| 60 °C | -4.4% |
7.01 kg / 15.45 lbs
7007.5 g / 68.7 N
|
|
| 80 °C | -6.6% |
6.85 kg / 15.09 lbs
6846.2 g / 67.2 N
|
|
| 100 °C | -28.8% |
5.22 kg / 11.51 lbs
5219.0 g / 51.2 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 40x5x3 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
14.97 kg / 33.01 lbs
4 697 Gs
|
2.25 kg / 4.95 lbs
2246 g / 22.0 N
|
N/A |
| 1 mm |
11.16 kg / 24.61 lbs
6 017 Gs
|
1.67 kg / 3.69 lbs
1674 g / 16.4 N
|
10.04 kg / 22.15 lbs
~0 Gs
|
| 2 mm |
7.88 kg / 17.38 lbs
5 058 Gs
|
1.18 kg / 2.61 lbs
1183 g / 11.6 N
|
7.10 kg / 15.64 lbs
~0 Gs
|
| 3 mm |
5.44 kg / 11.99 lbs
4 201 Gs
|
0.82 kg / 1.80 lbs
816 g / 8.0 N
|
4.90 kg / 10.79 lbs
~0 Gs
|
| 5 mm |
2.59 kg / 5.71 lbs
2 899 Gs
|
0.39 kg / 0.86 lbs
389 g / 3.8 N
|
2.33 kg / 5.14 lbs
~0 Gs
|
| 10 mm |
0.54 kg / 1.20 lbs
1 328 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.08 lbs
~0 Gs
|
| 20 mm |
0.07 kg / 0.15 lbs
471 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
83 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
55 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
27 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
20 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 40x5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Immobilizer | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 40x5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
40.82 km/h
(11.34 m/s)
|
0.29 J | |
| 30 mm |
70.50 km/h
(19.58 m/s)
|
0.86 J | |
| 50 mm |
91.02 km/h
(25.28 m/s)
|
1.44 J | |
| 100 mm |
128.71 km/h
(35.75 m/s)
|
2.88 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 123 Mx | 51.2 µWb |
| Współczynnik Pc | 0.27 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.33 kg | Standard |
| Woda (dno rzeki) |
8.39 kg
(+1.06 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.27
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają dużą zdolność odporności magnetycznej.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co pozwala na ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w dowolnych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w innowacjach, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Minusy
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- o grubości wynoszącej minimum 10 mm
- z płaszczyzną idealnie równą
- w warunkach idealnego przylegania (metal do metalu)
- przy prostopadłym wektorze siły (kąt 90 stopni)
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Przerwa między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Masywność podłoża – zbyt cienka płyta nie zamyka strumienia, przez co część mocy marnuje się w powietrzu.
- Skład chemiczny podłoża – stal niskowęglowa przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – szlifowane elementy zapewniają maksymalny styk, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Udźwig mierzono używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Co więcej, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Ochrona dłoni
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać rany, zgniecenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Wrażliwość na ciepło
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
Reakcje alergiczne
Pewna grupa użytkowników ma alergię kontaktową na nikiel, którym zabezpieczane są magnesy neodymowe. Częste dotykanie może skutkować zaczerwienienie skóry. Zalecamy noszenie rękawic bezlateksowych.
Implanty medyczne
Uwaga zdrowotna: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Bezpieczny dystans
Ekstremalne oddziaływanie może zniszczyć zapis na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Ochrona oczu
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich rozpryśnięcie na ostre odłamki.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Potężne pole
Bądź ostrożny. Magnesy neodymowe działają z daleka i łączą się z ogromną siłą, często szybciej niż zdążysz zareagować.
Uwaga: zadławienie
Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.
