MPL 40x5x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020402
GTIN/EAN: 5906301811916
Długość
40 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
4.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.33 kg / 71.91 N
Indukcja magnetyczna
348.83 mT / 3488 Gs
Powłoka
[NiCuNi] nikiel
6.65 ZŁ z VAT / szt. + cena za transport
5.41 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się poprzez
nasz formularz online
na naszej stronie.
Udźwig a także kształt magnesów neodymowych zweryfikujesz u nas w
kalkulatorze mocy.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Specyfikacja techniczna - MPL 40x5x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x5x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020402 |
| GTIN/EAN | 5906301811916 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 4.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.33 kg / 71.91 N |
| Indukcja magnetyczna ~ ? | 348.83 mT / 3488 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe informacje stanowią wynik kalkulacji fizycznej. Wartości oparte są na modelach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 40x5x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3485 Gs
348.5 mT
|
7.33 kg / 7330.0 g
71.9 N
|
mocny |
| 1 mm |
2529 Gs
252.9 mT
|
3.86 kg / 3859.9 g
37.9 N
|
mocny |
| 2 mm |
1741 Gs
174.1 mT
|
1.83 kg / 1829.7 g
17.9 N
|
bezpieczny |
| 3 mm |
1217 Gs
121.7 mT
|
0.89 kg / 893.7 g
8.8 N
|
bezpieczny |
| 5 mm |
664 Gs
66.4 mT
|
0.27 kg / 265.9 g
2.6 N
|
bezpieczny |
| 10 mm |
235 Gs
23.5 mT
|
0.03 kg / 33.5 g
0.3 N
|
bezpieczny |
| 15 mm |
116 Gs
11.6 mT
|
0.01 kg / 8.2 g
0.1 N
|
bezpieczny |
| 20 mm |
67 Gs
6.7 mT
|
0.00 kg / 2.7 g
0.0 N
|
bezpieczny |
| 30 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.5 g
0.0 N
|
bezpieczny |
| 50 mm |
8 Gs
0.8 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 40x5x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.47 kg / 1466.0 g
14.4 N
|
| 1 mm | Stal (~0.2) |
0.77 kg / 772.0 g
7.6 N
|
| 2 mm | Stal (~0.2) |
0.37 kg / 366.0 g
3.6 N
|
| 3 mm | Stal (~0.2) |
0.18 kg / 178.0 g
1.7 N
|
| 5 mm | Stal (~0.2) |
0.05 kg / 54.0 g
0.5 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 40x5x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.20 kg / 2199.0 g
21.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.47 kg / 1466.0 g
14.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.73 kg / 733.0 g
7.2 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.67 kg / 3665.0 g
36.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 40x5x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 733.0 g
7.2 N
|
| 1 mm |
|
1.83 kg / 1832.5 g
18.0 N
|
| 2 mm |
|
3.67 kg / 3665.0 g
36.0 N
|
| 5 mm |
|
7.33 kg / 7330.0 g
71.9 N
|
| 10 mm |
|
7.33 kg / 7330.0 g
71.9 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 40x5x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.33 kg / 7330.0 g
71.9 N
|
OK |
| 40 °C | -2.2% |
7.17 kg / 7168.7 g
70.3 N
|
OK |
| 60 °C | -4.4% |
7.01 kg / 7007.5 g
68.7 N
|
|
| 80 °C | -6.6% |
6.85 kg / 6846.2 g
67.2 N
|
|
| 100 °C | -28.8% |
5.22 kg / 5219.0 g
51.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 40x5x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
14.97 kg / 14973 g
146.9 N
4 697 Gs
|
N/A |
| 1 mm |
11.16 kg / 11161 g
109.5 N
6 017 Gs
|
10.04 kg / 10045 g
98.5 N
~0 Gs
|
| 2 mm |
7.88 kg / 7885 g
77.3 N
5 058 Gs
|
7.10 kg / 7096 g
69.6 N
~0 Gs
|
| 3 mm |
5.44 kg / 5439 g
53.4 N
4 201 Gs
|
4.90 kg / 4895 g
48.0 N
~0 Gs
|
| 5 mm |
2.59 kg / 2591 g
25.4 N
2 899 Gs
|
2.33 kg / 2332 g
22.9 N
~0 Gs
|
| 10 mm |
0.54 kg / 543 g
5.3 N
1 328 Gs
|
0.49 kg / 489 g
4.8 N
~0 Gs
|
| 20 mm |
0.07 kg / 68 g
0.7 N
471 Gs
|
0.06 kg / 62 g
0.6 N
~0 Gs
|
| 50 mm |
0.00 kg / 2 g
0.0 N
83 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 40x5x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 4.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 40x5x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
40.82 km/h
(11.34 m/s)
|
0.29 J | |
| 30 mm |
70.50 km/h
(19.58 m/s)
|
0.86 J | |
| 50 mm |
91.02 km/h
(25.28 m/s)
|
1.44 J | |
| 100 mm |
128.71 km/h
(35.75 m/s)
|
2.88 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 40x5x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 40x5x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 123 Mx | 51.2 µWb |
| Współczynnik Pc | 0.27 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x5x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.33 kg | Standard |
| Woda (dno rzeki) |
8.39 kg
(+1.06 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na powierzchni pionowej magnes utrzyma tylko ułamek siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Stabilność termiczna
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.27
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Zalety
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o symboliczny 1%.
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy upadku, dlatego warto stosować osłony lub uchwyty.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- przy zastosowaniu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w stabilnej temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet mikroskopijna przerwa (np. 0,5 mm) skutkuje zmniejszenie udźwigu nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Wektor obciążenia – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość blachy – zbyt cienka płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Struktura powierzchni – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp między magnesem, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy przy magnesach z neodymem
Tylko dla dorosłych
Magnesy neodymowe nie służą do zabawy. Inhalacja kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Nie wierć w magnesach
Pył generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Przegrzanie magnesu
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Niszczenie danych
Potężne pole magnetyczne może usunąć informacje na kartach płatniczych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Smartfony i tablety
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.
Ogromna siła
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Reakcje alergiczne
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Implanty medyczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Ryzyko złamań
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
