MPL 25x15x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020392
GTIN/EAN: 5906301811893
Długość
25 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
5.63 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.89 kg / 18.53 N
Indukcja magnetyczna
120.03 mT / 1200 Gs
Powłoka
[NiCuNi] nikiel
2.39 ZŁ z VAT / szt. + cena za transport
1.940 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
alternatywnie skontaktuj się za pomocą
formularz
na stronie kontaktowej.
Masę a także budowę magnesu zweryfikujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Karta produktu - MPL 25x15x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x15x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020392 |
| GTIN/EAN | 5906301811893 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 5.63 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.89 kg / 18.53 N |
| Indukcja magnetyczna ~ ? | 120.03 mT / 1200 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - dane
Poniższe informacje stanowią bezpośredni efekt analizy inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste warunki mogą odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako wstępny drogowskaz przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 25x15x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
1200 Gs
120.0 mT
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
słaby uchwyt |
| 1 mm |
1144 Gs
114.4 mT
|
1.72 kg / 3.79 lbs
1717.6 g / 16.8 N
|
słaby uchwyt |
| 2 mm |
1060 Gs
106.0 mT
|
1.48 kg / 3.25 lbs
1475.6 g / 14.5 N
|
słaby uchwyt |
| 3 mm |
961 Gs
96.1 mT
|
1.21 kg / 2.67 lbs
1212.1 g / 11.9 N
|
słaby uchwyt |
| 5 mm |
754 Gs
75.4 mT
|
0.75 kg / 1.65 lbs
746.8 g / 7.3 N
|
słaby uchwyt |
| 10 mm |
376 Gs
37.6 mT
|
0.19 kg / 0.41 lbs
185.6 g / 1.8 N
|
słaby uchwyt |
| 15 mm |
193 Gs
19.3 mT
|
0.05 kg / 0.11 lbs
48.9 g / 0.5 N
|
słaby uchwyt |
| 20 mm |
107 Gs
10.7 mT
|
0.02 kg / 0.03 lbs
15.0 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
2.2 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
10 Gs
1.0 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 25x15x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
378.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 2 mm | Stal (~0.2) |
0.30 kg / 0.65 lbs
296.0 g / 2.9 N
|
| 3 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
242.0 g / 2.4 N
|
| 5 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
38.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 25x15x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 1.25 lbs
567.0 g / 5.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.83 lbs
378.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
189.0 g / 1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 2.08 lbs
945.0 g / 9.3 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 25x15x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
189.0 g / 1.9 N
|
| 1 mm |
|
0.47 kg / 1.04 lbs
472.5 g / 4.6 N
|
| 2 mm |
|
0.95 kg / 2.08 lbs
945.0 g / 9.3 N
|
| 3 mm |
|
1.42 kg / 3.13 lbs
1417.5 g / 13.9 N
|
| 5 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 10 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 11 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
| 12 mm |
|
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 25x15x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.89 kg / 4.17 lbs
1890.0 g / 18.5 N
|
OK |
| 40 °C | -2.2% |
1.85 kg / 4.08 lbs
1848.4 g / 18.1 N
|
OK |
| 60 °C | -4.4% |
1.81 kg / 3.98 lbs
1806.8 g / 17.7 N
|
|
| 80 °C | -6.6% |
1.77 kg / 3.89 lbs
1765.3 g / 17.3 N
|
|
| 100 °C | -28.8% |
1.35 kg / 2.97 lbs
1345.7 g / 13.2 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 25x15x2 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.33 kg / 7.34 lbs
2 260 Gs
|
0.50 kg / 1.10 lbs
499 g / 4.9 N
|
N/A |
| 1 mm |
3.20 kg / 7.05 lbs
2 353 Gs
|
0.48 kg / 1.06 lbs
480 g / 4.7 N
|
2.88 kg / 6.35 lbs
~0 Gs
|
| 2 mm |
3.03 kg / 6.67 lbs
2 288 Gs
|
0.45 kg / 1.00 lbs
454 g / 4.5 N
|
2.72 kg / 6.00 lbs
~0 Gs
|
| 3 mm |
2.82 kg / 6.22 lbs
2 210 Gs
|
0.42 kg / 0.93 lbs
423 g / 4.2 N
|
2.54 kg / 5.60 lbs
~0 Gs
|
| 5 mm |
2.37 kg / 5.22 lbs
2 024 Gs
|
0.36 kg / 0.78 lbs
355 g / 3.5 N
|
2.13 kg / 4.70 lbs
~0 Gs
|
| 10 mm |
1.32 kg / 2.90 lbs
1 509 Gs
|
0.20 kg / 0.44 lbs
197 g / 1.9 N
|
1.18 kg / 2.61 lbs
~0 Gs
|
| 20 mm |
0.33 kg / 0.72 lbs
752 Gs
|
0.05 kg / 0.11 lbs
49 g / 0.5 N
|
0.29 kg / 0.65 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
128 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
81 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
38 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
28 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 25x15x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 25x15x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
19.58 km/h
(5.44 m/s)
|
0.08 J | |
| 30 mm |
32.03 km/h
(8.90 m/s)
|
0.22 J | |
| 50 mm |
41.32 km/h
(11.48 m/s)
|
0.37 J | |
| 100 mm |
58.43 km/h
(16.23 m/s)
|
0.74 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 25x15x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 25x15x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 600 Mx | 56.0 µWb |
| Współczynnik Pc | 0.14 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x15x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.89 kg | Standard |
| Woda (dno rzeki) |
2.16 kg
(+0.27 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes zachowa zaledwie ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.14
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najwydajniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Znajdują szerokie zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną aparaturę medyczną.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność min. 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy prostopadłym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Udźwig w praktyce – czynniki wpływu
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Strumień magnetyczny przenika na wylot, zamiast zamienić się w udźwig.
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Faktura blachy – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Powierzchnie chropowate zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury skutkuje osłabieniem siły. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 5 razy. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
BHP przy magnesach
Nie lekceważ mocy
Zanim zaczniesz, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Wpływ na zdrowie
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Obróbka mechaniczna
Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Nie dawać dzieciom
Neodymowe magnesy nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Ochrona oczu
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Reakcje alergiczne
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może skutkować silną reakcję alergiczną. Wskazane jest noszenie rękawic bezlateksowych.
