MPL 50x25x12 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020343
GTIN/EAN: 5906301811855
Długość
50 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
12 mm [±0,1 mm]
Waga
112.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
37.12 kg / 364.18 N
Indukcja magnetyczna
340.43 mT / 3404 Gs
Powłoka
[NiCuNi] nikiel
45.51 ZŁ z VAT / szt. + cena za transport
37.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Masz wątpliwości?
Zadzwoń i zapytaj
+48 22 499 98 98
alternatywnie daj znać za pomocą
formularz zgłoszeniowy
w sekcji kontakt.
Parametry a także formę magnesu neodymowego skontrolujesz dzięki naszemu
kalkulatorze mocy.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
MPL 50x25x12 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 50x25x12 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020343 |
| GTIN/EAN | 5906301811855 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 12 mm [±0,1 mm] |
| Waga | 112.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 37.12 kg / 364.18 N |
| Indukcja magnetyczna ~ ? | 340.43 mT / 3404 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Modelowanie fizyczna magnesu - raport
Poniższe dane są bezpośredni efekt analizy inżynierskiej. Wyniki zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
MPL 50x25x12 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3404 Gs
340.4 mT
|
37.12 kg / 37120.0 g
364.1 N
|
miażdżący |
| 1 mm |
3234 Gs
323.4 mT
|
33.50 kg / 33501.5 g
328.6 N
|
miażdżący |
| 2 mm |
3052 Gs
305.2 mT
|
29.85 kg / 29847.1 g
292.8 N
|
miażdżący |
| 3 mm |
2866 Gs
286.6 mT
|
26.32 kg / 26317.3 g
258.2 N
|
miażdżący |
| 5 mm |
2496 Gs
249.6 mT
|
19.97 kg / 19965.4 g
195.9 N
|
miażdżący |
| 10 mm |
1702 Gs
170.2 mT
|
9.28 kg / 9278.2 g
91.0 N
|
mocny |
| 15 mm |
1151 Gs
115.1 mT
|
4.25 kg / 4246.0 g
41.7 N
|
mocny |
| 20 mm |
792 Gs
79.2 mT
|
2.01 kg / 2012.1 g
19.7 N
|
mocny |
| 30 mm |
404 Gs
40.4 mT
|
0.52 kg / 523.0 g
5.1 N
|
bezpieczny |
| 50 mm |
137 Gs
13.7 mT
|
0.06 kg / 60.1 g
0.6 N
|
bezpieczny |
MPL 50x25x12 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.42 kg / 7424.0 g
72.8 N
|
| 1 mm | Stal (~0.2) |
6.70 kg / 6700.0 g
65.7 N
|
| 2 mm | Stal (~0.2) |
5.97 kg / 5970.0 g
58.6 N
|
| 3 mm | Stal (~0.2) |
5.26 kg / 5264.0 g
51.6 N
|
| 5 mm | Stal (~0.2) |
3.99 kg / 3994.0 g
39.2 N
|
| 10 mm | Stal (~0.2) |
1.86 kg / 1856.0 g
18.2 N
|
| 15 mm | Stal (~0.2) |
0.85 kg / 850.0 g
8.3 N
|
| 20 mm | Stal (~0.2) |
0.40 kg / 402.0 g
3.9 N
|
| 30 mm | Stal (~0.2) |
0.10 kg / 104.0 g
1.0 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 12.0 g
0.1 N
|
MPL 50x25x12 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
11.14 kg / 11136.0 g
109.2 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.42 kg / 7424.0 g
72.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.71 kg / 3712.0 g
36.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
18.56 kg / 18560.0 g
182.1 N
|
MPL 50x25x12 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.86 kg / 1856.0 g
18.2 N
|
| 1 mm |
|
4.64 kg / 4640.0 g
45.5 N
|
| 2 mm |
|
9.28 kg / 9280.0 g
91.0 N
|
| 5 mm |
|
23.20 kg / 23200.0 g
227.6 N
|
| 10 mm |
|
37.12 kg / 37120.0 g
364.1 N
|
MPL 50x25x12 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
37.12 kg / 37120.0 g
364.1 N
|
OK |
| 40 °C | -2.2% |
36.30 kg / 36303.4 g
356.1 N
|
OK |
| 60 °C | -4.4% |
35.49 kg / 35486.7 g
348.1 N
|
|
| 80 °C | -6.6% |
34.67 kg / 34670.1 g
340.1 N
|
|
| 100 °C | -28.8% |
26.43 kg / 26429.4 g
259.3 N
|
MPL 50x25x12 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
89.28 kg / 89277 g
875.8 N
4 856 Gs
|
N/A |
| 1 mm |
84.99 kg / 84991 g
833.8 N
6 642 Gs
|
76.49 kg / 76492 g
750.4 N
~0 Gs
|
| 2 mm |
80.57 kg / 80574 g
790.4 N
6 467 Gs
|
72.52 kg / 72517 g
711.4 N
~0 Gs
|
| 3 mm |
76.16 kg / 76159 g
747.1 N
6 287 Gs
|
68.54 kg / 68543 g
672.4 N
~0 Gs
|
| 5 mm |
67.49 kg / 67487 g
662.1 N
5 919 Gs
|
60.74 kg / 60739 g
595.8 N
~0 Gs
|
| 10 mm |
48.02 kg / 48019 g
471.1 N
4 992 Gs
|
43.22 kg / 43217 g
424.0 N
~0 Gs
|
| 20 mm |
22.32 kg / 22315 g
218.9 N
3 403 Gs
|
20.08 kg / 20084 g
197.0 N
~0 Gs
|
| 50 mm |
2.41 kg / 2407 g
23.6 N
1 118 Gs
|
2.17 kg / 2166 g
21.2 N
~0 Gs
|
MPL 50x25x12 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 17.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 14.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 11.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 8.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
MPL 50x25x12 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
20.99 km/h
(5.83 m/s)
|
1.91 J | |
| 30 mm |
32.01 km/h
(8.89 m/s)
|
4.45 J | |
| 50 mm |
41.00 km/h
(11.39 m/s)
|
7.30 J | |
| 100 mm |
57.93 km/h
(16.09 m/s)
|
14.57 J |
MPL 50x25x12 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 50x25x12 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 42 945 Mx | 429.5 µWb |
| Współczynnik Pc | 0.40 | Niski (Płaski) |
MPL 50x25x12 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 37.12 kg | Standard |
| Woda (dno rzeki) |
42.50 kg
(+5.38 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.40
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Zachowują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o niezauważalny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w przemyśle.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować gwintować kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- przy użyciu zwory ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- charakteryzującej się równą strukturą
- w warunkach bezszczelinowych (metal do metalu)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Praktyczne aspekty udźwigu – czynniki
- Dystans – występowanie jakiejkolwiek warstwy (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (często ok. 20-30% siły nominalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą generować mniejszy udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.
Uczulenie na powłokę
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Rozprysk materiału
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.
Świadome użytkowanie
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często szybciej niż zdążysz zareagować.
Karty i dyski
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Poważne obrażenia
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Temperatura pracy
Standardowe magnesy neodymowe (typ N) tracą właściwości po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.
Ryzyko połknięcia
Silne magnesy nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Rozruszniki serca
Pacjenci z stymulatorem serca muszą zachować bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Trzymaj z dala od elektroniki
Ważna informacja: magnesy neodymowe wytwarzają pole, które zakłócają systemy nawigacji. Zachowaj bezpieczny dystans od telefonu, tabletu i nawigacji.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
