MPL 7x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020176
GTIN/EAN: 5906301811824
Długość
7 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.1 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.60 kg / 15.70 N
Indukcja magnetyczna
376.99 mT / 3770 Gs
Powłoka
[NiCuNi] nikiel
0.541 ZŁ z VAT / szt. + cena za transport
0.440 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
albo pisz korzystając z
formularz zapytania
na stronie kontaktowej.
Właściwości a także wygląd magnesu neodymowego przetestujesz w naszym
naszym kalkulatorze magnetycznym.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MPL 7x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 7x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020176 |
| GTIN/EAN | 5906301811824 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 7 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.1 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.60 kg / 15.70 N |
| Indukcja magnetyczna ~ ? | 376.99 mT / 3770 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione informacje są bezpośredni efekt kalkulacji fizycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 7x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3767 Gs
376.7 mT
|
1.60 kg / 1600.0 g
15.7 N
|
słaby uchwyt |
| 1 mm |
2886 Gs
288.6 mT
|
0.94 kg / 939.5 g
9.2 N
|
słaby uchwyt |
| 2 mm |
2048 Gs
204.8 mT
|
0.47 kg / 472.8 g
4.6 N
|
słaby uchwyt |
| 3 mm |
1412 Gs
141.2 mT
|
0.22 kg / 224.8 g
2.2 N
|
słaby uchwyt |
| 5 mm |
686 Gs
68.6 mT
|
0.05 kg / 53.0 g
0.5 N
|
słaby uchwyt |
| 10 mm |
165 Gs
16.5 mT
|
0.00 kg / 3.1 g
0.0 N
|
słaby uchwyt |
| 15 mm |
60 Gs
6.0 mT
|
0.00 kg / 0.4 g
0.0 N
|
słaby uchwyt |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 7x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.32 kg / 320.0 g
3.1 N
|
| 1 mm | Stal (~0.2) |
0.19 kg / 188.0 g
1.8 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 94.0 g
0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 7x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.48 kg / 480.0 g
4.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.32 kg / 320.0 g
3.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 160.0 g
1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.80 kg / 800.0 g
7.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 7x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 160.0 g
1.6 N
|
| 1 mm |
|
0.40 kg / 400.0 g
3.9 N
|
| 2 mm |
|
0.80 kg / 800.0 g
7.8 N
|
| 5 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
| 10 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 7x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.60 kg / 1600.0 g
15.7 N
|
OK |
| 40 °C | -2.2% |
1.56 kg / 1564.8 g
15.4 N
|
OK |
| 60 °C | -4.4% |
1.53 kg / 1529.6 g
15.0 N
|
|
| 80 °C | -6.6% |
1.49 kg / 1494.4 g
14.7 N
|
|
| 100 °C | -28.8% |
1.14 kg / 1139.2 g
11.2 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 7x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.29 kg / 4286 g
42.0 N
5 173 Gs
|
N/A |
| 1 mm |
3.38 kg / 3375 g
33.1 N
6 685 Gs
|
3.04 kg / 3038 g
29.8 N
~0 Gs
|
| 2 mm |
2.52 kg / 2517 g
24.7 N
5 773 Gs
|
2.27 kg / 2265 g
22.2 N
~0 Gs
|
| 3 mm |
1.81 kg / 1808 g
17.7 N
4 893 Gs
|
1.63 kg / 1627 g
16.0 N
~0 Gs
|
| 5 mm |
0.88 kg / 876 g
8.6 N
3 405 Gs
|
0.79 kg / 788 g
7.7 N
~0 Gs
|
| 10 mm |
0.14 kg / 142 g
1.4 N
1 372 Gs
|
0.13 kg / 128 g
1.3 N
~0 Gs
|
| 20 mm |
0.01 kg / 8 g
0.1 N
329 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 7x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 7x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
38.51 km/h
(10.70 m/s)
|
0.06 J | |
| 30 mm |
66.62 km/h
(18.51 m/s)
|
0.19 J | |
| 50 mm |
86.01 km/h
(23.89 m/s)
|
0.31 J | |
| 100 mm |
121.63 km/h
(33.79 m/s)
|
0.63 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 7x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 7x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 909 Mx | 19.1 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 7x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.60 kg | Standard |
| Woda (dno rzeki) |
1.83 kg
(+0.23 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety neodymowych magnesów Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Wyróżniają się ogromną odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki powłoce (nikiel, złoto, srebro) mają estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest bardzo wysoka, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Duża swoboda w doborze kształtu i wymiaru to ich ogromny plus w inżynierii.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje powlekane tworzywem do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- na płycie wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- której grubość wynosi ok. 10 mm
- z płaszczyzną oczyszczoną i gładką
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temp. ok. 20°C
Udźwig w praktyce – czynniki wpływu
- Odstęp (pomiędzy magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Domieszki stopowe obniżają przenikalność magnetyczną i siłę trzymania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Ciepło – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano stosując blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Bezpieczna praca przy magnesach z neodymem
Nie dawać dzieciom
Magnesy neodymowe to nie zabawki. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Niebezpieczeństwo dla rozruszników
Osoby z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić działanie urządzenia ratującego życie.
Poważne obrażenia
Duże magnesy mogą zdruzgotać palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Siła neodymu
Zanim zaczniesz, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Pył jest łatwopalny
Pył generowany podczas cięcia magnesów jest samozapalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Limity termiczne
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Uczulenie na powłokę
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni zawiera nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Ochrona oczu
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Urządzenia elektroniczne
Bardzo silne pole magnetyczne może usunąć informacje na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Interferencja magnetyczna
Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj odpowiednią odległość od komórki, tabletu i nawigacji.
