MPL 7x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020176
GTIN/EAN: 5906301811824
Długość
7 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
1.1 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.60 kg / 15.70 N
Indukcja magnetyczna
376.99 mT / 3770 Gs
Powłoka
[NiCuNi] nikiel
0.541 ZŁ z VAT / szt. + cena za transport
0.440 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo napisz przez
nasz formularz online
na stronie kontakt.
Masę a także wygląd magnesu neodymowego wyliczysz w naszym
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MPL 7x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 7x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020176 |
| GTIN/EAN | 5906301811824 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 7 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 1.1 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.60 kg / 15.70 N |
| Indukcja magnetyczna ~ ? | 376.99 mT / 3770 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Niniejsze wartości są rezultat kalkulacji matematycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - wykres oddziaływania
MPL 7x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3767 Gs
376.7 mT
|
1.60 kg / 1600.0 g
15.7 N
|
bezpieczny |
| 1 mm |
2886 Gs
288.6 mT
|
0.94 kg / 939.5 g
9.2 N
|
bezpieczny |
| 2 mm |
2048 Gs
204.8 mT
|
0.47 kg / 472.8 g
4.6 N
|
bezpieczny |
| 3 mm |
1412 Gs
141.2 mT
|
0.22 kg / 224.8 g
2.2 N
|
bezpieczny |
| 5 mm |
686 Gs
68.6 mT
|
0.05 kg / 53.0 g
0.5 N
|
bezpieczny |
| 10 mm |
165 Gs
16.5 mT
|
0.00 kg / 3.1 g
0.0 N
|
bezpieczny |
| 15 mm |
60 Gs
6.0 mT
|
0.00 kg / 0.4 g
0.0 N
|
bezpieczny |
| 20 mm |
28 Gs
2.8 mT
|
0.00 kg / 0.1 g
0.0 N
|
bezpieczny |
| 30 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
| 50 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.0 g
0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 7x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.32 kg / 320.0 g
3.1 N
|
| 1 mm | Stal (~0.2) |
0.19 kg / 188.0 g
1.8 N
|
| 2 mm | Stal (~0.2) |
0.09 kg / 94.0 g
0.9 N
|
| 3 mm | Stal (~0.2) |
0.04 kg / 44.0 g
0.4 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 10.0 g
0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 7x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.48 kg / 480.0 g
4.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.32 kg / 320.0 g
3.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.16 kg / 160.0 g
1.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.80 kg / 800.0 g
7.8 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 7x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.16 kg / 160.0 g
1.6 N
|
| 1 mm |
|
0.40 kg / 400.0 g
3.9 N
|
| 2 mm |
|
0.80 kg / 800.0 g
7.8 N
|
| 5 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
| 10 mm |
|
1.60 kg / 1600.0 g
15.7 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - spadek mocy
MPL 7x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.60 kg / 1600.0 g
15.7 N
|
OK |
| 40 °C | -2.2% |
1.56 kg / 1564.8 g
15.4 N
|
OK |
| 60 °C | -4.4% |
1.53 kg / 1529.6 g
15.0 N
|
|
| 80 °C | -6.6% |
1.49 kg / 1494.4 g
14.7 N
|
|
| 100 °C | -28.8% |
1.14 kg / 1139.2 g
11.2 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 7x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
4.29 kg / 4286 g
42.0 N
5 173 Gs
|
N/A |
| 1 mm |
3.38 kg / 3375 g
33.1 N
6 685 Gs
|
3.04 kg / 3038 g
29.8 N
~0 Gs
|
| 2 mm |
2.52 kg / 2517 g
24.7 N
5 773 Gs
|
2.27 kg / 2265 g
22.2 N
~0 Gs
|
| 3 mm |
1.81 kg / 1808 g
17.7 N
4 893 Gs
|
1.63 kg / 1627 g
16.0 N
~0 Gs
|
| 5 mm |
0.88 kg / 876 g
8.6 N
3 405 Gs
|
0.79 kg / 788 g
7.7 N
~0 Gs
|
| 10 mm |
0.14 kg / 142 g
1.4 N
1 372 Gs
|
0.13 kg / 128 g
1.3 N
~0 Gs
|
| 20 mm |
0.01 kg / 8 g
0.1 N
329 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
30 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 7x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 2.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 2.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 7x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
38.51 km/h
(10.70 m/s)
|
0.06 J | |
| 30 mm |
66.62 km/h
(18.51 m/s)
|
0.19 J | |
| 50 mm |
86.01 km/h
(23.89 m/s)
|
0.31 J | |
| 100 mm |
121.63 km/h
(33.79 m/s)
|
0.63 J |
Tabela 9: Odporność na korozję
MPL 7x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 7x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 1 909 Mx | 19.1 µWb |
| Współczynnik Pc | 0.48 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 7x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.60 kg | Standard |
| Woda (dno rzeki) |
1.83 kg
(+0.23 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes zachowa tylko ok. 20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) znacząco osłabia siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.48
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy budowie małych urządzeń.
Słabe strony
- Ze względu na brak elastyczności, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – od czego zależy?
- na bloku wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny wynosi ok. 10 mm
- z płaszczyzną oczyszczoną i gładką
- przy całkowitym braku odstępu (brak farby)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (rdza, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (często ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Rodzaj materiału – najlepszym wyborem jest czysta stal żelazna. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek siły. Należy pamiętać o limit termiczny dla danego modelu.
Pomiar udźwigu wykonywano na gładkiej blaszce o odpowiedniej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet minimalna przerwa między magnesem, a blachą obniża nośność.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Niklowa powłoka a alergia
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub zakup wersje w obudowie plastikowej.
Chronić przed dziećmi
Silne magnesy nie służą do zabawy. Inhalacja kilku magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Samozapłon
Proszek powstający podczas obróbki magnesów jest łatwopalny. Unikaj wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Ochrona oczu
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.
Zagrożenie życia
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Trwała utrata siły
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Uszkodzenia czujników
Silne pole magnetyczne zakłóca działanie magnetometrów w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Uszkodzenia ciała
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
