MPL 60x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020174
GTIN/EAN: 5906301811800
Długość
60 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.61 kg / 349.34 N
Indukcja magnetyczna
329.64 mT / 3296 Gs
Powłoka
[NiCuNi] nikiel
68.27 ZŁ z VAT / szt. + cena za transport
55.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub napisz korzystając z
formularz kontaktowy
na naszej stronie.
Parametry a także kształt magnesów wyliczysz dzięki naszemu
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 60x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 60x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020174 |
| GTIN/EAN | 5906301811800 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.61 kg / 349.34 N |
| Indukcja magnetyczna ~ ? | 329.64 mT / 3296 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze informacje stanowią rezultat kalkulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 60x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3296 Gs
329.6 mT
|
35.61 kg / 35610.0 g
349.3 N
|
krytyczny poziom |
| 1 mm |
3087 Gs
308.7 mT
|
31.25 kg / 31248.2 g
306.5 N
|
krytyczny poziom |
| 2 mm |
2866 Gs
286.6 mT
|
26.93 kg / 26929.3 g
264.2 N
|
krytyczny poziom |
| 3 mm |
2643 Gs
264.3 mT
|
22.90 kg / 22895.5 g
224.6 N
|
krytyczny poziom |
| 5 mm |
2216 Gs
221.6 mT
|
16.10 kg / 16103.3 g
158.0 N
|
krytyczny poziom |
| 10 mm |
1397 Gs
139.7 mT
|
6.40 kg / 6402.3 g
62.8 N
|
średnie ryzyko |
| 15 mm |
907 Gs
90.7 mT
|
2.70 kg / 2697.7 g
26.5 N
|
średnie ryzyko |
| 20 mm |
615 Gs
61.5 mT
|
1.24 kg / 1239.2 g
12.2 N
|
słaby uchwyt |
| 30 mm |
314 Gs
31.4 mT
|
0.32 kg / 322.6 g
3.2 N
|
słaby uchwyt |
| 50 mm |
108 Gs
10.8 mT
|
0.04 kg / 38.6 g
0.4 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 60x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.12 kg / 7122.0 g
69.9 N
|
| 1 mm | Stal (~0.2) |
6.25 kg / 6250.0 g
61.3 N
|
| 2 mm | Stal (~0.2) |
5.39 kg / 5386.0 g
52.8 N
|
| 3 mm | Stal (~0.2) |
4.58 kg / 4580.0 g
44.9 N
|
| 5 mm | Stal (~0.2) |
3.22 kg / 3220.0 g
31.6 N
|
| 10 mm | Stal (~0.2) |
1.28 kg / 1280.0 g
12.6 N
|
| 15 mm | Stal (~0.2) |
0.54 kg / 540.0 g
5.3 N
|
| 20 mm | Stal (~0.2) |
0.25 kg / 248.0 g
2.4 N
|
| 30 mm | Stal (~0.2) |
0.06 kg / 64.0 g
0.6 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 60x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.68 kg / 10683.0 g
104.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.12 kg / 7122.0 g
69.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.56 kg / 3561.0 g
34.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.81 kg / 17805.0 g
174.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 60x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.78 kg / 1780.5 g
17.5 N
|
| 1 mm |
|
4.45 kg / 4451.3 g
43.7 N
|
| 2 mm |
|
8.90 kg / 8902.5 g
87.3 N
|
| 5 mm |
|
22.26 kg / 22256.3 g
218.3 N
|
| 10 mm |
|
35.61 kg / 35610.0 g
349.3 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 60x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.61 kg / 35610.0 g
349.3 N
|
OK |
| 40 °C | -2.2% |
34.83 kg / 34826.6 g
341.6 N
|
OK |
| 60 °C | -4.4% |
34.04 kg / 34043.2 g
334.0 N
|
|
| 80 °C | -6.6% |
33.26 kg / 33259.7 g
326.3 N
|
|
| 100 °C | -28.8% |
25.35 kg / 25354.3 g
248.7 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 60x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
80.35 kg / 80353 g
788.3 N
4 692 Gs
|
N/A |
| 1 mm |
75.49 kg / 75491 g
740.6 N
6 389 Gs
|
67.94 kg / 67942 g
666.5 N
~0 Gs
|
| 2 mm |
70.51 kg / 70511 g
691.7 N
6 174 Gs
|
63.46 kg / 63460 g
622.5 N
~0 Gs
|
| 3 mm |
65.58 kg / 65582 g
643.4 N
5 955 Gs
|
59.02 kg / 59023 g
579.0 N
~0 Gs
|
| 5 mm |
56.11 kg / 56113 g
550.5 N
5 508 Gs
|
50.50 kg / 50501 g
495.4 N
~0 Gs
|
| 10 mm |
36.34 kg / 36337 g
356.5 N
4 432 Gs
|
32.70 kg / 32703 g
320.8 N
~0 Gs
|
| 20 mm |
14.45 kg / 14447 g
141.7 N
2 795 Gs
|
13.00 kg / 13002 g
127.5 N
~0 Gs
|
| 50 mm |
1.38 kg / 1384 g
13.6 N
865 Gs
|
1.25 kg / 1246 g
12.2 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 60x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 10.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 8.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 60x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.20 km/h
(6.17 m/s)
|
1.71 J | |
| 30 mm |
34.94 km/h
(9.71 m/s)
|
4.24 J | |
| 50 mm |
44.89 km/h
(12.47 m/s)
|
7.00 J | |
| 100 mm |
63.44 km/h
(17.62 m/s)
|
13.97 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 60x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 60x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 37 480 Mx | 374.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 60x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.61 kg | Standard |
| Woda (dno rzeki) |
40.77 kg
(+5.16 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – po upływie dekady spadek mocy wynosi tylko ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (NiCuNi, złoto, Ag) mają estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co ma na to wpływ?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- której grubość wynosi ok. 10 mm
- o szlifowanej powierzchni styku
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- przy pionowym kierunku działania siły (kąt 90 stopni)
- w warunkach ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Przerwa między powierzchniami – każdy milimetr dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Czynnik termiczny – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie życia
Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może zakłócić pracę implantu.
Nie przegrzewaj magnesów
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego domenę magnetyczną i siłę przyciągania.
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż grozi to zapłonem.
Bezpieczny dystans
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Smartfony i tablety
Urządzenia nawigacyjne są wyjątkowo wrażliwe na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Ostrożność wymagana
Używaj magnesy świadomie. Ich potężna moc może zszokować nawet profesjonalistów. Bądź skupiony i nie lekceważ ich siły.
Ochrona dłoni
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Kruchy spiek
Mimo metalicznego wyglądu, neodym jest kruchy i nieodporny na uderzenia. Nie rzucaj, gdyż magnes może się rozpaść na drobiny.
Chronić przed dziećmi
Bezwzględnie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.
