MPL 60x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020174
GTIN/EAN: 5906301811800
Długość
60 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
90 g
Kierunek magnesowania
↑ osiowy
Udźwig
35.61 kg / 349.34 N
Indukcja magnetyczna
329.64 mT / 3296 Gs
Powłoka
[NiCuNi] nikiel
68.27 ZŁ z VAT / szt. + cena za transport
55.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
albo pisz za pomocą
nasz formularz online
na stronie kontakt.
Siłę i budowę magnesów zobaczysz u nas w
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MPL 60x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 60x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020174 |
| GTIN/EAN | 5906301811800 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 60 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 90 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 35.61 kg / 349.34 N |
| Indukcja magnetyczna ~ ? | 329.64 mT / 3296 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią rezultat symulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne parametry mogą odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 60x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3296 Gs
329.6 mT
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
miażdżący |
| 1 mm |
3087 Gs
308.7 mT
|
31.25 kg / 68.89 lbs
31248.2 g / 306.5 N
|
miażdżący |
| 2 mm |
2866 Gs
286.6 mT
|
26.93 kg / 59.37 lbs
26929.3 g / 264.2 N
|
miażdżący |
| 3 mm |
2643 Gs
264.3 mT
|
22.90 kg / 50.48 lbs
22895.5 g / 224.6 N
|
miażdżący |
| 5 mm |
2216 Gs
221.6 mT
|
16.10 kg / 35.50 lbs
16103.3 g / 158.0 N
|
miażdżący |
| 10 mm |
1397 Gs
139.7 mT
|
6.40 kg / 14.11 lbs
6402.3 g / 62.8 N
|
uwaga |
| 15 mm |
907 Gs
90.7 mT
|
2.70 kg / 5.95 lbs
2697.7 g / 26.5 N
|
uwaga |
| 20 mm |
615 Gs
61.5 mT
|
1.24 kg / 2.73 lbs
1239.2 g / 12.2 N
|
słaby uchwyt |
| 30 mm |
314 Gs
31.4 mT
|
0.32 kg / 0.71 lbs
322.6 g / 3.2 N
|
słaby uchwyt |
| 50 mm |
108 Gs
10.8 mT
|
0.04 kg / 0.09 lbs
38.6 g / 0.4 N
|
słaby uchwyt |
Tabela 2: Równoległa siła ześlizgu (ściana)
MPL 60x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
|
| 1 mm | Stal (~0.2) |
6.25 kg / 13.78 lbs
6250.0 g / 61.3 N
|
| 2 mm | Stal (~0.2) |
5.39 kg / 11.87 lbs
5386.0 g / 52.8 N
|
| 3 mm | Stal (~0.2) |
4.58 kg / 10.10 lbs
4580.0 g / 44.9 N
|
| 5 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
|
| 10 mm | Stal (~0.2) |
1.28 kg / 2.82 lbs
1280.0 g / 12.6 N
|
| 15 mm | Stal (~0.2) |
0.54 kg / 1.19 lbs
540.0 g / 5.3 N
|
| 20 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 30 mm | Stal (~0.2) |
0.06 kg / 0.14 lbs
64.0 g / 0.6 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 60x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.68 kg / 23.55 lbs
10683.0 g / 104.8 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.56 kg / 7.85 lbs
3561.0 g / 34.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
17.81 kg / 39.25 lbs
17805.0 g / 174.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 60x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.78 kg / 3.93 lbs
1780.5 g / 17.5 N
|
| 1 mm |
|
4.45 kg / 9.81 lbs
4451.3 g / 43.7 N
|
| 2 mm |
|
8.90 kg / 19.63 lbs
8902.5 g / 87.3 N
|
| 3 mm |
|
13.35 kg / 29.44 lbs
13353.8 g / 131.0 N
|
| 5 mm |
|
22.26 kg / 49.07 lbs
22256.3 g / 218.3 N
|
| 10 mm |
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
| 11 mm |
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
| 12 mm |
|
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 60x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
|
OK |
| 40 °C | -2.2% |
34.83 kg / 76.78 lbs
34826.6 g / 341.6 N
|
OK |
| 60 °C | -4.4% |
34.04 kg / 75.05 lbs
34043.2 g / 334.0 N
|
|
| 80 °C | -6.6% |
33.26 kg / 73.33 lbs
33259.7 g / 326.3 N
|
|
| 100 °C | -28.8% |
25.35 kg / 55.90 lbs
25354.3 g / 248.7 N
|
Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 60x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
80.35 kg / 177.15 lbs
4 692 Gs
|
12.05 kg / 26.57 lbs
12053 g / 118.2 N
|
N/A |
| 1 mm |
75.49 kg / 166.43 lbs
6 389 Gs
|
11.32 kg / 24.96 lbs
11324 g / 111.1 N
|
67.94 kg / 149.79 lbs
~0 Gs
|
| 2 mm |
70.51 kg / 155.45 lbs
6 174 Gs
|
10.58 kg / 23.32 lbs
10577 g / 103.8 N
|
63.46 kg / 139.90 lbs
~0 Gs
|
| 3 mm |
65.58 kg / 144.58 lbs
5 955 Gs
|
9.84 kg / 21.69 lbs
9837 g / 96.5 N
|
59.02 kg / 130.12 lbs
~0 Gs
|
| 5 mm |
56.11 kg / 123.71 lbs
5 508 Gs
|
8.42 kg / 18.56 lbs
8417 g / 82.6 N
|
50.50 kg / 111.34 lbs
~0 Gs
|
| 10 mm |
36.34 kg / 80.11 lbs
4 432 Gs
|
5.45 kg / 12.02 lbs
5450 g / 53.5 N
|
32.70 kg / 72.10 lbs
~0 Gs
|
| 20 mm |
14.45 kg / 31.85 lbs
2 795 Gs
|
2.17 kg / 4.78 lbs
2167 g / 21.3 N
|
13.00 kg / 28.66 lbs
~0 Gs
|
| 50 mm |
1.38 kg / 3.05 lbs
865 Gs
|
0.21 kg / 0.46 lbs
208 g / 2.0 N
|
1.25 kg / 2.75 lbs
~0 Gs
|
| 60 mm |
0.73 kg / 1.60 lbs
627 Gs
|
0.11 kg / 0.24 lbs
109 g / 1.1 N
|
0.66 kg / 1.44 lbs
~0 Gs
|
| 70 mm |
0.40 kg / 0.89 lbs
467 Gs
|
0.06 kg / 0.13 lbs
60 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 lbs
355 Gs
|
0.03 kg / 0.08 lbs
35 g / 0.3 N
|
0.21 kg / 0.46 lbs
~0 Gs
|
| 90 mm |
0.14 kg / 0.31 lbs
275 Gs
|
0.02 kg / 0.05 lbs
21 g / 0.2 N
|
0.13 kg / 0.28 lbs
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 lbs
217 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 60x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 16.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 13.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 10.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 8.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 60x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.20 km/h
(6.17 m/s)
|
1.71 J | |
| 30 mm |
34.94 km/h
(9.71 m/s)
|
4.24 J | |
| 50 mm |
44.89 km/h
(12.47 m/s)
|
7.00 J | |
| 100 mm |
63.44 km/h
(17.62 m/s)
|
13.97 J |
Tabela 9: Odporność na korozję
MPL 60x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 60x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 37 480 Mx | 374.8 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 60x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 35.61 kg | Standard |
| Woda (dno rzeki) |
40.77 kg
(+5.16 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na pionowej ścianie magnes utrzyma jedynie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na skuteczność.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Parametry udźwigu
Siła oderwania magnesu w optymalnych warunkach – co ma na to wpływ?
- z użyciem podłoża ze miękkiej stali, działającej jako idealny przewodnik strumienia
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (metal do metalu)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Szczelina powietrzna (pomiędzy magnesem a blachą), gdyż nawet niewielka odległość (np. 0,5 mm) może spowodować zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Skład chemiczny podłoża – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – szlifowane elementy gwarantują idealne doleganie, co zwiększa nasycenie pola. Powierzchnie chropowate zmniejszają efektywność.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża siłę trzymania.
Ostrzeżenia
Nośniki danych
Potężne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych pamięciach. Utrzymuj odległość min. 10 cm.
Uwaga medyczna
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
Uwaga na odpryski
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Ryzyko zmiażdżenia
Silne magnesy mogą zdruzgotać palce błyskawicznie. Absolutnie nie wkładaj dłoni między dwa przyciągające się elementy.
Reakcje alergiczne
Wiedza medyczna potwierdza, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub zakup wersje w obudowie plastikowej.
Potężne pole
Postępuj ostrożnie. Magnesy neodymowe przyciągają z daleka i łączą się z impetem, często gwałtowniej niż jesteś w stanie przewidzieć.
Trzymaj z dala od elektroniki
Urządzenia nawigacyjne są wyjątkowo podatne na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Pył jest łatwopalny
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Produkt nie dla dzieci
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od niepowołanych osób.
Maksymalna temperatura
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
