Magnesy neodymowe – najmocniejsze na rynku

Szukasz ogromnej mocy w małym rozmiarze? Mamy w ofercie kompleksowy asortyment magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do zastosowań domowych, warsztatu oraz zadań przemysłowych. Przejrzyj asortyment z szybką wysyłką.

sprawdź cennik i wymiary

Uchwyty do poszukiwań wodnych

Odkryj pasję z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz mocne linki są niezawodne w każdej wodzie.

wybierz zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Profesjonalne rozwiązania do montażu bez wiercenia. Mocowania gwintowane (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na halach produkcyjnych. Idealnie nadają się przy mocowaniu lamp, czujników oraz reklam.

zobacz zastosowania przemysłowe

🚚 Zamów do 14:00 – wyślemy tego samego dnia!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 60x20x10 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020174

GTIN/EAN: 5906301811800

5.00

Długość

60 mm [±0,1 mm]

Szerokość

20 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

90 g

Kierunek magnesowania

↑ osiowy

Udźwig

35.61 kg / 349.34 N

Indukcja magnetyczna

329.64 mT / 3296 Gs

Powłoka

[NiCuNi] nikiel

68.27 z VAT / szt. + cena za transport

55.50 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
55.50 ZŁ
68.27 ZŁ
cena od 20 szt.
52.17 ZŁ
64.17 ZŁ
cena od 50 szt.
48.84 ZŁ
60.07 ZŁ
Szukasz zniżki?

Zadzwoń już teraz +48 888 99 98 98 alternatywnie pisz za pomocą formularz zapytania przez naszą stronę.
Moc a także formę elementów magnetycznych wyliczysz u nas w kalkulatorze masy magnetycznej.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Właściwości fizyczne MPL 60x20x10 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 60x20x10 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020174
GTIN/EAN 5906301811800
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 60 mm [±0,1 mm]
Szerokość 20 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 90 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 35.61 kg / 349.34 N
Indukcja magnetyczna ~ ? 329.64 mT / 3296 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 60x20x10 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - raport

Przedstawione dane są bezpośredni efekt symulacji inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie się różnić. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 60x20x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3296 Gs
329.6 mT
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
krytyczny poziom
1 mm 3087 Gs
308.7 mT
31.25 kg / 68.89 lbs
31248.2 g / 306.5 N
krytyczny poziom
2 mm 2866 Gs
286.6 mT
26.93 kg / 59.37 lbs
26929.3 g / 264.2 N
krytyczny poziom
3 mm 2643 Gs
264.3 mT
22.90 kg / 50.48 lbs
22895.5 g / 224.6 N
krytyczny poziom
5 mm 2216 Gs
221.6 mT
16.10 kg / 35.50 lbs
16103.3 g / 158.0 N
krytyczny poziom
10 mm 1397 Gs
139.7 mT
6.40 kg / 14.11 lbs
6402.3 g / 62.8 N
uwaga
15 mm 907 Gs
90.7 mT
2.70 kg / 5.95 lbs
2697.7 g / 26.5 N
uwaga
20 mm 615 Gs
61.5 mT
1.24 kg / 2.73 lbs
1239.2 g / 12.2 N
niskie ryzyko
30 mm 314 Gs
31.4 mT
0.32 kg / 0.71 lbs
322.6 g / 3.2 N
niskie ryzyko
50 mm 108 Gs
10.8 mT
0.04 kg / 0.09 lbs
38.6 g / 0.4 N
niskie ryzyko

Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 60x20x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
1 mm Stal (~0.2) 6.25 kg / 13.78 lbs
6250.0 g / 61.3 N
2 mm Stal (~0.2) 5.39 kg / 11.87 lbs
5386.0 g / 52.8 N
3 mm Stal (~0.2) 4.58 kg / 10.10 lbs
4580.0 g / 44.9 N
5 mm Stal (~0.2) 3.22 kg / 7.10 lbs
3220.0 g / 31.6 N
10 mm Stal (~0.2) 1.28 kg / 2.82 lbs
1280.0 g / 12.6 N
15 mm Stal (~0.2) 0.54 kg / 1.19 lbs
540.0 g / 5.3 N
20 mm Stal (~0.2) 0.25 kg / 0.55 lbs
248.0 g / 2.4 N
30 mm Stal (~0.2) 0.06 kg / 0.14 lbs
64.0 g / 0.6 N
50 mm Stal (~0.2) 0.01 kg / 0.02 lbs
8.0 g / 0.1 N

Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 60x20x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
10.68 kg / 23.55 lbs
10683.0 g / 104.8 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
7.12 kg / 15.70 lbs
7122.0 g / 69.9 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
3.56 kg / 7.85 lbs
3561.0 g / 34.9 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
17.81 kg / 39.25 lbs
17805.0 g / 174.7 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 60x20x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.78 kg / 3.93 lbs
1780.5 g / 17.5 N
1 mm
13%
4.45 kg / 9.81 lbs
4451.3 g / 43.7 N
2 mm
25%
8.90 kg / 19.63 lbs
8902.5 g / 87.3 N
3 mm
38%
13.35 kg / 29.44 lbs
13353.8 g / 131.0 N
5 mm
63%
22.26 kg / 49.07 lbs
22256.3 g / 218.3 N
10 mm
100%
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
11 mm
100%
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
12 mm
100%
35.61 kg / 78.51 lbs
35610.0 g / 349.3 N

Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 60x20x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 35.61 kg / 78.51 lbs
35610.0 g / 349.3 N
OK
40 °C -2.2% 34.83 kg / 76.78 lbs
34826.6 g / 341.6 N
OK
60 °C -4.4% 34.04 kg / 75.05 lbs
34043.2 g / 334.0 N
80 °C -6.6% 33.26 kg / 73.33 lbs
33259.7 g / 326.3 N
100 °C -28.8% 25.35 kg / 55.90 lbs
25354.3 g / 248.7 N

Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 60x20x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Opór ścinania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 80.35 kg / 177.15 lbs
4 692 Gs
12.05 kg / 26.57 lbs
12053 g / 118.2 N
N/A
1 mm 75.49 kg / 166.43 lbs
6 389 Gs
11.32 kg / 24.96 lbs
11324 g / 111.1 N
67.94 kg / 149.79 lbs
~0 Gs
2 mm 70.51 kg / 155.45 lbs
6 174 Gs
10.58 kg / 23.32 lbs
10577 g / 103.8 N
63.46 kg / 139.90 lbs
~0 Gs
3 mm 65.58 kg / 144.58 lbs
5 955 Gs
9.84 kg / 21.69 lbs
9837 g / 96.5 N
59.02 kg / 130.12 lbs
~0 Gs
5 mm 56.11 kg / 123.71 lbs
5 508 Gs
8.42 kg / 18.56 lbs
8417 g / 82.6 N
50.50 kg / 111.34 lbs
~0 Gs
10 mm 36.34 kg / 80.11 lbs
4 432 Gs
5.45 kg / 12.02 lbs
5450 g / 53.5 N
32.70 kg / 72.10 lbs
~0 Gs
20 mm 14.45 kg / 31.85 lbs
2 795 Gs
2.17 kg / 4.78 lbs
2167 g / 21.3 N
13.00 kg / 28.66 lbs
~0 Gs
50 mm 1.38 kg / 3.05 lbs
865 Gs
0.21 kg / 0.46 lbs
208 g / 2.0 N
1.25 kg / 2.75 lbs
~0 Gs
60 mm 0.73 kg / 1.60 lbs
627 Gs
0.11 kg / 0.24 lbs
109 g / 1.1 N
0.66 kg / 1.44 lbs
~0 Gs
70 mm 0.40 kg / 0.89 lbs
467 Gs
0.06 kg / 0.13 lbs
60 g / 0.6 N
0.36 kg / 0.80 lbs
~0 Gs
80 mm 0.23 kg / 0.51 lbs
355 Gs
0.03 kg / 0.08 lbs
35 g / 0.3 N
0.21 kg / 0.46 lbs
~0 Gs
90 mm 0.14 kg / 0.31 lbs
275 Gs
0.02 kg / 0.05 lbs
21 g / 0.2 N
0.13 kg / 0.28 lbs
~0 Gs
100 mm 0.09 kg / 0.19 lbs
217 Gs
0.01 kg / 0.03 lbs
13 g / 0.1 N
0.08 kg / 0.17 lbs
~0 Gs

Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 60x20x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 16.5 cm
Implant słuchowy 10 Gs (1.0 mT) 13.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 10.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 8.0 cm
Immobilizer 50 Gs (5.0 mT) 7.0 cm
Karta płatnicza 400 Gs (40.0 mT) 3.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.5 cm

Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 60x20x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 22.20 km/h
(6.17 m/s)
1.71 J
30 mm 34.94 km/h
(9.71 m/s)
4.24 J
50 mm 44.89 km/h
(12.47 m/s)
7.00 J
100 mm 63.44 km/h
(17.62 m/s)
13.97 J

Tabela 9: Trwałość powłoki antykorozyjnej
MPL 60x20x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MPL 60x20x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 37 480 Mx 374.8 µWb
Współczynnik Pc 0.35 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 60x20x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 35.61 kg Standard
Woda (dno rzeki) 40.77 kg
(+5.16 kg zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.

2. Grubość podłoża

*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.

3. Praca w cieple

*Dla materiału N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020174-2026
Szybki konwerter jednostek
Siła oderwania

Moc pola

Sprawdź inne propozycje

Produkt ten to ekstremalnie mocny magnes płytkowy wykonany z materiału NdFeB, co przy wymiarach 60x20x10 mm i wadze 90 g gwarantuje klasę premium połączenia. Jako sztabka magnetyczna o dużej mocy (ok. 35.61 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Dodatkowo, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie magnesów blokowych wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 60x20x10 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako niewidoczne mocowania pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 60x20x10 mm, co przy wadze 90 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 35.61 kg (siła ~349.34 N), co przy tak płaskim kształcie świadczy o dużej mocy materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety i wady magnesów z neodymu Nd2Fe14B.

Korzyści

Neodymy to nie tylko moc przyciągania, ale także inne kluczowe właściwości, w tym::
  • Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
  • Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
  • Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i wygląda estetycznie.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
  • Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
  • Można je precyzyjnie obrabiać do specyficznych wymiarów, co pozwala na ich adaptację w przemyśle.
  • Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i motorów elektrycznych, po zaawansowaną diagnostykę.
  • Potęga w małej formie – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.

Ograniczenia

Warto znać też słabe strony magnesów neodymowych:
  • Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Charakterystyka udźwigu

Wytrzymałość na oderwanie magnesu w warunkach idealnychco się na to składa?

Deklarowana siła magnesu odnosi się do maksymalnych osiągów, którą uzyskano w warunkach laboratoryjnych, a mianowicie:
  • na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
  • o grubości przynajmniej 10 mm
  • o idealnie gładkiej powierzchni styku
  • przy całkowitym braku odstępu (bez farby)
  • dla siły działającej pod kątem prostym (w osi magnesu)
  • w warunkach ok. 20°C

Udźwig w praktyce – czynniki wpływu

Na efektywny udźwig wpływają konkretne warunki, m.in. (od najważniejszych):
  • Dystans (między magnesem a blachą), ponieważ nawet mikroskopijna przerwa (np. 0,5 mm) może spowodować zmniejszenie siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
  • Kierunek siły – należy wiedzieć, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości nominalnej.
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
  • Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
  • Stan powierzchni – szlifowane elementy gwarantują idealne doleganie, co poprawia siłę. Nierówny metal zmniejszają efektywność.
  • Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a na mrozie mogą być silniejsze (do pewnej granicy).

Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą redukuje udźwig.

Bezpieczna praca z magnesami neodymowymi
Ostrzeżenie dla sercowców

Pacjenci z rozrusznikiem serca muszą utrzymać duży odstęp od magnesów. Pole magnetyczne może rozregulować pracę urządzenia ratującego życie.

Zakłócenia GPS i telefonów

Uwaga: magnesy neodymowe wytwarzają pole, które dezorientują elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.

Nośniki danych

Nie przykładaj magnesów do portfela, laptopa czy ekranu. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.

Uwaga na odpryski

Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów spowoduje ich rozkruszenie na drobne kawałki.

Pył jest łatwopalny

Szlifowanie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.

Temperatura pracy

Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.

Nie lekceważ mocy

Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.

Uczulenie na powłokę

Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie przerwać pracę z magnesami i zabezpieczyć dłonie.

Uszkodzenia ciała

Dbaj o palce. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!

Uwaga: zadławienie

Neodymowe magnesy nie służą do zabawy. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.

Zagrożenie! Dowiedz się więcej o zagrożeniach w artykule: Bezpieczeństwo pracy z magnesami.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98