MPL 5x5x1 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020170
GTIN/EAN: 5906301811763
Długość
5 mm [±0,1 mm]
Szerokość
5 mm [±0,1 mm]
Wysokość
1 mm [±0,1 mm]
Waga
0.19 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.34 kg / 3.30 N
Indukcja magnetyczna
209.53 mT / 2095 Gs
Powłoka
[NiCuNi] nikiel
0.1845 ZŁ z VAT / szt. + cena za transport
0.1500 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
albo skontaktuj się przez
nasz formularz online
na naszej stronie.
Właściwości a także kształt magnesów neodymowych zobaczysz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne - MPL 5x5x1 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 5x5x1 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020170 |
| GTIN/EAN | 5906301811763 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 5 mm [±0,1 mm] |
| Szerokość | 5 mm [±0,1 mm] |
| Wysokość | 1 mm [±0,1 mm] |
| Waga | 0.19 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.34 kg / 3.30 N |
| Indukcja magnetyczna ~ ? | 209.53 mT / 2095 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Niniejsze dane stanowią bezpośredni efekt analizy inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 5x5x1 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2094 Gs
209.4 mT
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
bezpieczny |
| 1 mm |
1514 Gs
151.4 mT
|
0.18 kg / 0.39 lbs
177.8 g / 1.7 N
|
bezpieczny |
| 2 mm |
922 Gs
92.2 mT
|
0.07 kg / 0.15 lbs
65.9 g / 0.6 N
|
bezpieczny |
| 3 mm |
543 Gs
54.3 mT
|
0.02 kg / 0.05 lbs
22.9 g / 0.2 N
|
bezpieczny |
| 5 mm |
209 Gs
20.9 mT
|
0.00 kg / 0.01 lbs
3.4 g / 0.0 N
|
bezpieczny |
| 10 mm |
38 Gs
3.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
bezpieczny |
| 15 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 20 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 30 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
bezpieczny |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 5x5x1 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 1 mm | Stal (~0.2) |
0.04 kg / 0.08 lbs
36.0 g / 0.4 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 5x5x1 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.10 kg / 0.22 lbs
102.0 g / 1.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 5x5x1 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 1 mm |
|
0.09 kg / 0.19 lbs
85.0 g / 0.8 N
|
| 2 mm |
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 3 mm |
|
0.26 kg / 0.56 lbs
255.0 g / 2.5 N
|
| 5 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 10 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 11 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 12 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 5x5x1 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
OK |
| 40 °C | -2.2% |
0.33 kg / 0.73 lbs
332.5 g / 3.3 N
|
OK |
| 60 °C | -4.4% |
0.33 kg / 0.72 lbs
325.0 g / 3.2 N
|
|
| 80 °C | -6.6% |
0.32 kg / 0.70 lbs
317.6 g / 3.1 N
|
|
| 100 °C | -28.8% |
0.24 kg / 0.53 lbs
242.1 g / 2.4 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 5x5x1 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg) (N-N) |
|---|---|---|---|
| 0 mm |
0.68 kg / 1.49 lbs
3 601 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
N/A |
| 1 mm |
0.52 kg / 1.15 lbs
3 682 Gs
|
0.08 kg / 0.17 lbs
78 g / 0.8 N
|
0.47 kg / 1.04 lbs
~0 Gs
|
| 2 mm |
0.35 kg / 0.78 lbs
3 028 Gs
|
0.05 kg / 0.12 lbs
53 g / 0.5 N
|
0.32 kg / 0.70 lbs
~0 Gs
|
| 3 mm |
0.22 kg / 0.48 lbs
2 388 Gs
|
0.03 kg / 0.07 lbs
33 g / 0.3 N
|
0.20 kg / 0.44 lbs
~0 Gs
|
| 5 mm |
0.08 kg / 0.17 lbs
1 413 Gs
|
0.01 kg / 0.03 lbs
12 g / 0.1 N
|
0.07 kg / 0.15 lbs
~0 Gs
|
| 10 mm |
0.01 kg / 0.01 lbs
417 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
77 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
6 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
3 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 5x5x1 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 2.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 1.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 5x5x1 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
42.67 km/h
(11.85 m/s)
|
0.01 J | |
| 30 mm |
73.89 km/h
(20.53 m/s)
|
0.04 J | |
| 50 mm |
95.40 km/h
(26.50 m/s)
|
0.07 J | |
| 100 mm |
134.91 km/h
(37.48 m/s)
|
0.13 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 5x5x1 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 5x5x1 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 615 Mx | 6.2 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 5x5x1 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.34 kg | Standard |
| Woda (dno rzeki) |
0.39 kg
(+0.05 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne propozycje
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Zalety
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej pierwotnej siły (wg danych).
- Pozostają niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Idealny stosunek wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.
Charakterystyka udźwigu
Najwyższa nośność magnesu – co ma na to wpływ?
- na płycie wykonanej ze stali konstrukcyjnej, efektywnie zamykającej strumień magnetyczny
- o grubości nie mniejszej niż 10 mm
- o idealnie gładkiej powierzchni kontaktu
- przy całkowitym braku odstępu (bez powłok)
- przy osiowym wektorze siły (kąt 90 stopni)
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Odstęp (między magnesem a blachą), gdyż nawet bardzo mała przerwa (np. 0,5 mm) skutkuje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet 5 razy. Dodatkowo, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje nośność.
Środki ostrożności podczas pracy przy magnesach z neodymem
Siła neodymu
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Zagrożenie dla najmłodszych
Bezwzględnie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Wpływ na zdrowie
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie implantu.
Zagrożenie zapłonem
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Alergia na nikiel
Pewna grupa użytkowników ma nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Zalecamy noszenie rękawic bezlateksowych.
Rozprysk materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich rozkruszenie na ostre odłamki.
Urządzenia elektroniczne
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Przegrzanie magnesu
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.
