MPL 50x50x25 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020168
GTIN/EAN: 5906301811749
Długość
50 mm [±0,1 mm]
Szerokość
50 mm [±0,1 mm]
Wysokość
25 mm [±0,1 mm]
Waga
468.75 g
Kierunek magnesowania
↑ osiowy
Udźwig
90.53 kg / 888.15 N
Indukcja magnetyczna
413.25 mT / 4133 Gs
Powłoka
[NiCuNi] nikiel
159.90 ZŁ z VAT / szt. + cena za transport
130.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
albo pisz za pomocą
nasz formularz online
przez naszą stronę.
Moc i wygląd magnesów neodymowych skontrolujesz w naszym
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Specyfikacja produktu - MPL 50x50x25 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x50x25 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020168 |
| GTIN/EAN | 5906301811749 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 50 mm [±0,1 mm] |
| Wysokość | 25 mm [±0,1 mm] |
| Waga | 468.75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 90.53 kg / 888.15 N |
| Indukcja magnetyczna ~ ? | 413.25 mT / 4133 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Poniższe wartości są rezultat symulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 50x50x25 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4132 Gs
413.2 mT
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
miażdżący |
| 1 mm |
3999 Gs
399.9 mT
|
84.79 kg / 186.94 lbs
84794.0 g / 831.8 N
|
miażdżący |
| 2 mm |
3861 Gs
386.1 mT
|
79.04 kg / 174.25 lbs
79038.6 g / 775.4 N
|
miażdżący |
| 3 mm |
3720 Gs
372.0 mT
|
73.38 kg / 161.78 lbs
73381.8 g / 719.9 N
|
miażdżący |
| 5 mm |
3435 Gs
343.5 mT
|
62.56 kg / 137.93 lbs
62564.2 g / 613.8 N
|
miażdżący |
| 10 mm |
2742 Gs
274.2 mT
|
39.87 kg / 87.90 lbs
39868.7 g / 391.1 N
|
miażdżący |
| 15 mm |
2137 Gs
213.7 mT
|
24.21 kg / 53.37 lbs
24210.4 g / 237.5 N
|
miażdżący |
| 20 mm |
1649 Gs
164.9 mT
|
14.41 kg / 31.77 lbs
14409.9 g / 141.4 N
|
miażdżący |
| 30 mm |
988 Gs
98.8 mT
|
5.17 kg / 11.40 lbs
5170.9 g / 50.7 N
|
uwaga |
| 50 mm |
399 Gs
39.9 mT
|
0.85 kg / 1.86 lbs
845.8 g / 8.3 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 50x50x25 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| 1 mm | Stal (~0.2) |
16.96 kg / 37.39 lbs
16958.0 g / 166.4 N
|
| 2 mm | Stal (~0.2) |
15.81 kg / 34.85 lbs
15808.0 g / 155.1 N
|
| 3 mm | Stal (~0.2) |
14.68 kg / 32.36 lbs
14676.0 g / 144.0 N
|
| 5 mm | Stal (~0.2) |
12.51 kg / 27.58 lbs
12512.0 g / 122.7 N
|
| 10 mm | Stal (~0.2) |
7.97 kg / 17.58 lbs
7974.0 g / 78.2 N
|
| 15 mm | Stal (~0.2) |
4.84 kg / 10.67 lbs
4842.0 g / 47.5 N
|
| 20 mm | Stal (~0.2) |
2.88 kg / 6.35 lbs
2882.0 g / 28.3 N
|
| 30 mm | Stal (~0.2) |
1.03 kg / 2.28 lbs
1034.0 g / 10.1 N
|
| 50 mm | Stal (~0.2) |
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 50x50x25 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
27.16 kg / 59.88 lbs
27159.0 g / 266.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
18.11 kg / 39.92 lbs
18106.0 g / 177.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
9.05 kg / 19.96 lbs
9053.0 g / 88.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
45.27 kg / 99.79 lbs
45265.0 g / 444.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x50x25 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
3.02 kg / 6.65 lbs
3017.7 g / 29.6 N
|
| 1 mm |
|
7.54 kg / 16.63 lbs
7544.2 g / 74.0 N
|
| 2 mm |
|
15.09 kg / 33.26 lbs
15088.3 g / 148.0 N
|
| 3 mm |
|
22.63 kg / 49.90 lbs
22632.5 g / 222.0 N
|
| 5 mm |
|
37.72 kg / 83.16 lbs
37720.8 g / 370.0 N
|
| 10 mm |
|
75.44 kg / 166.32 lbs
75441.7 g / 740.1 N
|
| 11 mm |
|
82.99 kg / 182.95 lbs
82985.8 g / 814.1 N
|
| 12 mm |
|
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 50x50x25 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
90.53 kg / 199.58 lbs
90530.0 g / 888.1 N
|
OK |
| 40 °C | -2.2% |
88.54 kg / 195.19 lbs
88538.3 g / 868.6 N
|
OK |
| 60 °C | -4.4% |
86.55 kg / 190.80 lbs
86546.7 g / 849.0 N
|
|
| 80 °C | -6.6% |
84.56 kg / 186.41 lbs
84555.0 g / 829.5 N
|
|
| 100 °C | -28.8% |
64.46 kg / 142.10 lbs
64457.4 g / 632.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 50x50x25 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
263.15 kg / 580.14 lbs
5 403 Gs
|
39.47 kg / 87.02 lbs
39472 g / 387.2 N
|
N/A |
| 1 mm |
254.89 kg / 561.94 lbs
8 133 Gs
|
38.23 kg / 84.29 lbs
38234 g / 375.1 N
|
229.40 kg / 505.75 lbs
~0 Gs
|
| 2 mm |
246.47 kg / 543.38 lbs
7 998 Gs
|
36.97 kg / 81.51 lbs
36971 g / 362.7 N
|
221.83 kg / 489.04 lbs
~0 Gs
|
| 3 mm |
238.08 kg / 524.88 lbs
7 861 Gs
|
35.71 kg / 78.73 lbs
35713 g / 350.3 N
|
214.28 kg / 472.40 lbs
~0 Gs
|
| 5 mm |
221.48 kg / 488.27 lbs
7 582 Gs
|
33.22 kg / 73.24 lbs
33222 g / 325.9 N
|
199.33 kg / 439.45 lbs
~0 Gs
|
| 10 mm |
181.86 kg / 400.93 lbs
6 870 Gs
|
27.28 kg / 60.14 lbs
27279 g / 267.6 N
|
163.67 kg / 360.83 lbs
~0 Gs
|
| 20 mm |
115.89 kg / 255.49 lbs
5 484 Gs
|
17.38 kg / 38.32 lbs
17383 g / 170.5 N
|
104.30 kg / 229.94 lbs
~0 Gs
|
| 50 mm |
24.93 kg / 54.97 lbs
2 544 Gs
|
3.74 kg / 8.25 lbs
3740 g / 36.7 N
|
22.44 kg / 49.47 lbs
~0 Gs
|
| 60 mm |
15.03 kg / 33.14 lbs
1 975 Gs
|
2.25 kg / 4.97 lbs
2255 g / 22.1 N
|
13.53 kg / 29.82 lbs
~0 Gs
|
| 70 mm |
9.24 kg / 20.37 lbs
1 548 Gs
|
1.39 kg / 3.05 lbs
1386 g / 13.6 N
|
8.31 kg / 18.33 lbs
~0 Gs
|
| 80 mm |
5.81 kg / 12.80 lbs
1 228 Gs
|
0.87 kg / 1.92 lbs
871 g / 8.5 N
|
5.23 kg / 11.52 lbs
~0 Gs
|
| 90 mm |
3.74 kg / 8.24 lbs
985 Gs
|
0.56 kg / 1.24 lbs
560 g / 5.5 N
|
3.36 kg / 7.41 lbs
~0 Gs
|
| 100 mm |
2.46 kg / 5.42 lbs
799 Gs
|
0.37 kg / 0.81 lbs
369 g / 3.6 N
|
2.21 kg / 4.88 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 50x50x25 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 28.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 22.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 17.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 13.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 12.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 5.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 4.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x50x25 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.45 km/h
(4.85 m/s)
|
5.51 J | |
| 30 mm |
25.13 km/h
(6.98 m/s)
|
11.42 J | |
| 50 mm |
31.52 km/h
(8.76 m/s)
|
17.97 J | |
| 100 mm |
44.33 km/h
(12.31 m/s)
|
35.54 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x50x25 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 50x50x25 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 105 093 Mx | 1050.9 µWb |
| Współczynnik Pc | 0.54 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 50x50x25 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 90.53 kg | Standard |
| Woda (dno rzeki) |
103.66 kg
(+13.13 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.54
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Wady i zalety magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie 10 lat utrata mocy wynosi zaledwie ~1% (teoretycznie).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wytwarzają niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Duża swoboda w projektowaniu kształtu i wymiaru to ich ogromny plus w konstrukcjach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Minusy
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – co ma na to wpływ?
- przy użyciu blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju przynajmniej 10 mm
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- przy temperaturze pokojowej
Udźwig magnesu w użyciu – kluczowe czynniki
- Dystans – występowanie ciała obcego (farba, taśma, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – maksymalny parametr osiągamy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po powierzchni jest standardowo wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – zbyt cienka stal nie przyjmuje całego pola, przez co część strumienia ucieka w powietrzu.
- Typ metalu – różne stopy reaguje tak samo. Dodatki stopowe pogarszają efekt przyciągania.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig wyznaczano używając blachy o gładkiej powierzchni o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp pomiędzy magnesem, a blachą obniża siłę trzymania.
Bezpieczna praca z magnesami neodymowymi
Samozapłon
Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, aparaty słuchowe, czasomierze).
Uwaga na odpryski
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie dla najmłodszych
Zawsze zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki połączenia się magnesów wewnątrz organizmu są tragiczne.
Ostrzeżenie dla sercowców
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Limity termiczne
Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Nadwrażliwość na metale
Pewna grupa użytkowników posiada nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość nasze produkty. Dłuższy kontakt może powodować zaczerwienienie skóry. Zalecamy używanie rękawiczek ochronnych.
Ryzyko zmiażdżenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Interferencja magnetyczna
Pamiętaj: magnesy neodymowe generują pole, które zakłócają elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
