MPL 50x50x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020167
GTIN/EAN: 5906301811732
Długość
50 mm [±0,1 mm]
Szerokość
50 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
187.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
33.73 kg / 330.92 N
Indukcja magnetyczna
209.75 mT / 2097 Gs
Powłoka
[NiCuNi] nikiel
42.88 ZŁ z VAT / szt. + cena za transport
34.86 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo skontaktuj się za pomocą
formularz zapytania
przez naszą stronę.
Masę a także wygląd magnesu zweryfikujesz u nas w
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane produktu - MPL 50x50x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x50x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020167 |
| GTIN/EAN | 5906301811732 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 50 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 187.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 33.73 kg / 330.92 N |
| Indukcja magnetyczna ~ ? | 209.75 mT / 2097 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - raport
Przedstawione dane stanowią rezultat analizy matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 50x50x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2097 Gs
209.7 mT
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
miażdżący |
| 1 mm |
2056 Gs
205.6 mT
|
32.43 kg / 71.50 lbs
32430.0 g / 318.1 N
|
miażdżący |
| 2 mm |
2009 Gs
200.9 mT
|
30.96 kg / 68.27 lbs
30964.6 g / 303.8 N
|
miażdżący |
| 3 mm |
1957 Gs
195.7 mT
|
29.38 kg / 64.77 lbs
29380.4 g / 288.2 N
|
miażdżący |
| 5 mm |
1841 Gs
184.1 mT
|
25.99 kg / 57.30 lbs
25992.3 g / 255.0 N
|
miażdżący |
| 10 mm |
1514 Gs
151.4 mT
|
17.58 kg / 38.75 lbs
17577.6 g / 172.4 N
|
miażdżący |
| 15 mm |
1194 Gs
119.4 mT
|
10.93 kg / 24.10 lbs
10931.8 g / 107.2 N
|
miażdżący |
| 20 mm |
922 Gs
92.2 mT
|
6.51 kg / 14.36 lbs
6512.2 g / 63.9 N
|
uwaga |
| 30 mm |
543 Gs
54.3 mT
|
2.26 kg / 4.98 lbs
2260.0 g / 22.2 N
|
uwaga |
| 50 mm |
209 Gs
20.9 mT
|
0.33 kg / 0.74 lbs
334.1 g / 3.3 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 50x50x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.75 kg / 14.87 lbs
6746.0 g / 66.2 N
|
| 1 mm | Stal (~0.2) |
6.49 kg / 14.30 lbs
6486.0 g / 63.6 N
|
| 2 mm | Stal (~0.2) |
6.19 kg / 13.65 lbs
6192.0 g / 60.7 N
|
| 3 mm | Stal (~0.2) |
5.88 kg / 12.95 lbs
5876.0 g / 57.6 N
|
| 5 mm | Stal (~0.2) |
5.20 kg / 11.46 lbs
5198.0 g / 51.0 N
|
| 10 mm | Stal (~0.2) |
3.52 kg / 7.75 lbs
3516.0 g / 34.5 N
|
| 15 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 20 mm | Stal (~0.2) |
1.30 kg / 2.87 lbs
1302.0 g / 12.8 N
|
| 30 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 50 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 50x50x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
10.12 kg / 22.31 lbs
10119.0 g / 99.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.75 kg / 14.87 lbs
6746.0 g / 66.2 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.37 kg / 7.44 lbs
3373.0 g / 33.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
16.87 kg / 37.18 lbs
16865.0 g / 165.4 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x50x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.69 kg / 3.72 lbs
1686.5 g / 16.5 N
|
| 1 mm |
|
4.22 kg / 9.30 lbs
4216.3 g / 41.4 N
|
| 2 mm |
|
8.43 kg / 18.59 lbs
8432.5 g / 82.7 N
|
| 3 mm |
|
12.65 kg / 27.89 lbs
12648.8 g / 124.1 N
|
| 5 mm |
|
21.08 kg / 46.48 lbs
21081.2 g / 206.8 N
|
| 10 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
| 11 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
| 12 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 50x50x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
OK |
| 40 °C | -2.2% |
32.99 kg / 72.73 lbs
32987.9 g / 323.6 N
|
OK |
| 60 °C | -4.4% |
32.25 kg / 71.09 lbs
32245.9 g / 316.3 N
|
|
| 80 °C | -6.6% |
31.50 kg / 69.45 lbs
31503.8 g / 309.1 N
|
|
| 100 °C | -28.8% |
24.02 kg / 52.95 lbs
24015.8 g / 235.6 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 50x50x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
67.80 kg / 149.46 lbs
3 611 Gs
|
10.17 kg / 22.42 lbs
10169 g / 99.8 N
|
N/A |
| 1 mm |
66.54 kg / 146.70 lbs
4 156 Gs
|
9.98 kg / 22.01 lbs
9982 g / 97.9 N
|
59.89 kg / 132.03 lbs
~0 Gs
|
| 2 mm |
65.18 kg / 143.70 lbs
4 113 Gs
|
9.78 kg / 21.56 lbs
9777 g / 95.9 N
|
58.66 kg / 129.33 lbs
~0 Gs
|
| 3 mm |
63.74 kg / 140.53 lbs
4 067 Gs
|
9.56 kg / 21.08 lbs
9562 g / 93.8 N
|
57.37 kg / 126.48 lbs
~0 Gs
|
| 5 mm |
60.67 kg / 133.75 lbs
3 968 Gs
|
9.10 kg / 20.06 lbs
9101 g / 89.3 N
|
54.60 kg / 120.38 lbs
~0 Gs
|
| 10 mm |
52.24 kg / 115.18 lbs
3 682 Gs
|
7.84 kg / 17.28 lbs
7836 g / 76.9 N
|
47.02 kg / 103.66 lbs
~0 Gs
|
| 20 mm |
35.33 kg / 77.89 lbs
3 028 Gs
|
5.30 kg / 11.68 lbs
5299 g / 52.0 N
|
31.80 kg / 70.10 lbs
~0 Gs
|
| 50 mm |
7.69 kg / 16.96 lbs
1 413 Gs
|
1.15 kg / 2.54 lbs
1154 g / 11.3 N
|
6.92 kg / 15.26 lbs
~0 Gs
|
| 60 mm |
4.54 kg / 10.01 lbs
1 086 Gs
|
0.68 kg / 1.50 lbs
681 g / 6.7 N
|
4.09 kg / 9.01 lbs
~0 Gs
|
| 70 mm |
2.72 kg / 6.01 lbs
841 Gs
|
0.41 kg / 0.90 lbs
409 g / 4.0 N
|
2.45 kg / 5.41 lbs
~0 Gs
|
| 80 mm |
1.67 kg / 3.68 lbs
658 Gs
|
0.25 kg / 0.55 lbs
250 g / 2.5 N
|
1.50 kg / 3.31 lbs
~0 Gs
|
| 90 mm |
1.05 kg / 2.31 lbs
521 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 100 mm |
0.67 kg / 1.48 lbs
417 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.60 kg / 1.33 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 50x50x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 21.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 16.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 13.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 10.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 9.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 4.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 3.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 50x50x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
17.38 km/h
(4.83 m/s)
|
2.19 J | |
| 30 mm |
24.39 km/h
(6.78 m/s)
|
4.30 J | |
| 50 mm |
30.43 km/h
(8.45 m/s)
|
6.70 J | |
| 100 mm |
42.78 km/h
(11.88 m/s)
|
13.24 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 50x50x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 50x50x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 61 501 Mx | 615.0 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x50x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 33.73 kg | Standard |
| Woda (dno rzeki) |
38.62 kg
(+4.89 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) drastycznie redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po dekady utrata mocy wynosi tylko ~1% (teoretycznie).
- Charakteryzują się niezwykłą odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) mają nowoczesny, błyszczący wygląd.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie z dużą mocą.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, idealnych do konkretnego projektu.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- przy kontakcie z zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- o przekroju nie mniejszej niż 10 mm
- z powierzchnią oczyszczoną i gładką
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- przy temperaturze otoczenia pokojowej
Kluczowe elementy wpływające na udźwig
- Szczelina między powierzchniami – nawet ułamek milimetra odległości (spowodowany np. okleiną lub brudem) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – zbyt cienka blacha nie zamyka strumienia, przez co część mocy ucieka na drugą stronę.
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla obniżają przenikalność magnetyczną i siłę trzymania.
- Struktura powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i wyższy udźwig. Chropowatość działają jak mikroszczeliny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Nie lekceważ mocy
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Uszkodzenia czujników
Urządzenia nawigacyjne są niezwykle podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
To nie jest zabawka
Silne magnesy nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Nośniki danych
Nie przykładaj magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Nie wierć w magnesach
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Reakcje alergiczne
Część populacji ma nadwrażliwość na nikiel, którym zabezpieczane są magnesy neodymowe. Długotrwała ekspozycja może powodować wysypkę. Sugerujemy noszenie rękawiczek ochronnych.
Implanty medyczne
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Maksymalna temperatura
Kontroluj ciepło. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Kruchy spiek
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
