MPL 50x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020165
GTIN/EAN: 5906301811718
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
75 g
Kierunek magnesowania
↑ osiowy
Udźwig
29.99 kg / 294.15 N
Indukcja magnetyczna
337.18 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
43.05 ZŁ z VAT / szt. + cena za transport
35.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
ewentualnie pisz poprzez
nasz formularz online
na naszej stronie.
Parametry oraz formę magnesów zweryfikujesz dzięki naszemu
narzędziu online do obliczeń.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Dane - MPL 50x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020165 |
| GTIN/EAN | 5906301811718 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 29.99 kg / 294.15 N |
| Indukcja magnetyczna ~ ? | 337.18 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - raport
Przedstawione wartości stanowią wynik analizy matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 50x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3371 Gs
337.1 mT
|
29.99 kg / 29990.0 g
294.2 N
|
niebezpieczny! |
| 1 mm |
3158 Gs
315.8 mT
|
26.32 kg / 26323.3 g
258.2 N
|
niebezpieczny! |
| 2 mm |
2932 Gs
293.2 mT
|
22.69 kg / 22687.6 g
222.6 N
|
niebezpieczny! |
| 3 mm |
2703 Gs
270.3 mT
|
19.29 kg / 19286.7 g
189.2 N
|
niebezpieczny! |
| 5 mm |
2266 Gs
226.6 mT
|
13.55 kg / 13546.3 g
132.9 N
|
niebezpieczny! |
| 10 mm |
1419 Gs
141.9 mT
|
5.31 kg / 5313.0 g
52.1 N
|
uwaga |
| 15 mm |
908 Gs
90.8 mT
|
2.17 kg / 2174.5 g
21.3 N
|
uwaga |
| 20 mm |
603 Gs
60.3 mT
|
0.96 kg / 961.0 g
9.4 N
|
niskie ryzyko |
| 30 mm |
296 Gs
29.6 mT
|
0.23 kg / 231.0 g
2.3 N
|
niskie ryzyko |
| 50 mm |
97 Gs
9.7 mT
|
0.02 kg / 24.8 g
0.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła zsuwania (ściana)
MPL 50x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.00 kg / 5998.0 g
58.8 N
|
| 1 mm | Stal (~0.2) |
5.26 kg / 5264.0 g
51.6 N
|
| 2 mm | Stal (~0.2) |
4.54 kg / 4538.0 g
44.5 N
|
| 3 mm | Stal (~0.2) |
3.86 kg / 3858.0 g
37.8 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 2710.0 g
26.6 N
|
| 10 mm | Stal (~0.2) |
1.06 kg / 1062.0 g
10.4 N
|
| 15 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 192.0 g
1.9 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 50x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.00 kg / 8997.0 g
88.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.00 kg / 5998.0 g
58.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.00 kg / 2999.0 g
29.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
15.00 kg / 14995.0 g
147.1 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.50 kg / 1499.5 g
14.7 N
|
| 1 mm |
|
3.75 kg / 3748.8 g
36.8 N
|
| 2 mm |
|
7.50 kg / 7497.5 g
73.6 N
|
| 5 mm |
|
18.74 kg / 18743.8 g
183.9 N
|
| 10 mm |
|
29.99 kg / 29990.0 g
294.2 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - limit termiczny
MPL 50x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
29.99 kg / 29990.0 g
294.2 N
|
OK |
| 40 °C | -2.2% |
29.33 kg / 29330.2 g
287.7 N
|
OK |
| 60 °C | -4.4% |
28.67 kg / 28670.4 g
281.3 N
|
|
| 80 °C | -6.6% |
28.01 kg / 28010.7 g
274.8 N
|
|
| 100 °C | -28.8% |
21.35 kg / 21352.9 g
209.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 50x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
70.06 kg / 70058 g
687.3 N
4 789 Gs
|
N/A |
| 1 mm |
65.83 kg / 65828 g
645.8 N
6 535 Gs
|
59.25 kg / 59245 g
581.2 N
~0 Gs
|
| 2 mm |
61.49 kg / 61492 g
603.2 N
6 316 Gs
|
55.34 kg / 55343 g
542.9 N
~0 Gs
|
| 3 mm |
57.20 kg / 57198 g
561.1 N
6 092 Gs
|
51.48 kg / 51478 g
505.0 N
~0 Gs
|
| 5 mm |
48.94 kg / 48940 g
480.1 N
5 635 Gs
|
44.05 kg / 44046 g
432.1 N
~0 Gs
|
| 10 mm |
31.64 kg / 31645 g
310.4 N
4 531 Gs
|
28.48 kg / 28480 g
279.4 N
~0 Gs
|
| 20 mm |
12.41 kg / 12412 g
121.8 N
2 838 Gs
|
11.17 kg / 11170 g
109.6 N
~0 Gs
|
| 50 mm |
1.07 kg / 1066 g
10.5 N
832 Gs
|
0.96 kg / 960 g
9.4 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 50x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 9.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 7.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 50x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.29 km/h
(6.19 m/s)
|
1.44 J | |
| 30 mm |
35.10 km/h
(9.75 m/s)
|
3.56 J | |
| 50 mm |
45.12 km/h
(12.53 m/s)
|
5.89 J | |
| 100 mm |
63.77 km/h
(17.72 m/s)
|
11.77 J |
Tabela 9: Odporność na korozję
MPL 50x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Strumień)
MPL 50x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 32 980 Mx | 329.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 50x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 29.99 kg | Standard |
| Woda (dno rzeki) |
34.34 kg
(+4.35 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ułamek nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
FM Ruszt magnetyczny do leja fi 200 jednopoziomowy / N52 - filtr magnetyczny
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Plusy
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Zewnętrzne pola magnetyczne nie wpływają na ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Posiadają imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i urządzeń ratujących życie.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.
Ograniczenia
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Maksymalna siła przyciągania magnesu – co się na to składa?
- z użyciem płyty ze stali niskowęglowej, która służy jako zwora magnetyczna
- o grubości przynajmniej 10 mm
- z powierzchnią oczyszczoną i gładką
- przy zerowej szczelinie (bez farby)
- przy prostopadłym przyłożeniu siły odrywającej (kąt 90 stopni)
- w temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Dystans – obecność jakiejkolwiek warstwy (rdza, taśma, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Sposób obciążenia – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość ścianki – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast generować siłę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i siłę trzymania.
- Struktura powierzchni – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – wysoka temperatura zmniejsza siłę przyciągania. Zbyt wysoka temperatura może trwale uszkodzić magnes.
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 75%. Dodatkowo, nawet drobny odstęp między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Instrukcja bezpiecznej obsługi magnesów
Zagrożenie dla elektroniki
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
To nie jest zabawka
Koniecznie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a konsekwencje połączenia się magnesów wewnątrz organizmu są tragiczne.
Wpływ na zdrowie
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Poważne obrażenia
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może spowodować rany, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Ochrona oczu
Mimo niklowej powłoki, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Zagrożenie dla nawigacji
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Moc przyciągania
Postępuj ostrożnie. Magnesy neodymowe działają z daleka i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Maksymalna temperatura
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie zapłonem
Proszek powstający podczas szlifowania magnesów jest wybuchowy. Unikaj wiercenia w magnesach w warunkach domowych.
Alergia na nikiel
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
