MPL 50x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020165
GTIN/EAN: 5906301811718
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
75 g
Kierunek magnesowania
↑ osiowy
Udźwig
29.99 kg / 294.15 N
Indukcja magnetyczna
337.18 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
43.05 ZŁ z VAT / szt. + cena za transport
35.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
lub daj znać przez
nasz formularz online
na naszej stronie.
Parametry oraz kształt magnesu neodymowego wyliczysz w naszym
kalkulatorze mocy.
Zamów do 14:00, a wyślemy dziś!
Właściwości fizyczne MPL 50x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020165 |
| GTIN/EAN | 5906301811718 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 29.99 kg / 294.15 N |
| Indukcja magnetyczna ~ ? | 337.18 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione informacje są wynik kalkulacji matematycznej. Wartości zostały wyliczone na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą się różnić. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - charakterystyka
MPL 50x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3371 Gs
337.1 mT
|
29.99 kg / 29990.0 g
294.2 N
|
krytyczny poziom |
| 1 mm |
3158 Gs
315.8 mT
|
26.32 kg / 26323.3 g
258.2 N
|
krytyczny poziom |
| 2 mm |
2932 Gs
293.2 mT
|
22.69 kg / 22687.6 g
222.6 N
|
krytyczny poziom |
| 3 mm |
2703 Gs
270.3 mT
|
19.29 kg / 19286.7 g
189.2 N
|
krytyczny poziom |
| 5 mm |
2266 Gs
226.6 mT
|
13.55 kg / 13546.3 g
132.9 N
|
krytyczny poziom |
| 10 mm |
1419 Gs
141.9 mT
|
5.31 kg / 5313.0 g
52.1 N
|
średnie ryzyko |
| 15 mm |
908 Gs
90.8 mT
|
2.17 kg / 2174.5 g
21.3 N
|
średnie ryzyko |
| 20 mm |
603 Gs
60.3 mT
|
0.96 kg / 961.0 g
9.4 N
|
słaby uchwyt |
| 30 mm |
296 Gs
29.6 mT
|
0.23 kg / 231.0 g
2.3 N
|
słaby uchwyt |
| 50 mm |
97 Gs
9.7 mT
|
0.02 kg / 24.8 g
0.2 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 50x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.00 kg / 5998.0 g
58.8 N
|
| 1 mm | Stal (~0.2) |
5.26 kg / 5264.0 g
51.6 N
|
| 2 mm | Stal (~0.2) |
4.54 kg / 4538.0 g
44.5 N
|
| 3 mm | Stal (~0.2) |
3.86 kg / 3858.0 g
37.8 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 2710.0 g
26.6 N
|
| 10 mm | Stal (~0.2) |
1.06 kg / 1062.0 g
10.4 N
|
| 15 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 192.0 g
1.9 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 46.0 g
0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 50x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.00 kg / 8997.0 g
88.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.00 kg / 5998.0 g
58.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.00 kg / 2999.0 g
29.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
15.00 kg / 14995.0 g
147.1 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 50x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
1.50 kg / 1499.5 g
14.7 N
|
| 1 mm |
|
3.75 kg / 3748.8 g
36.8 N
|
| 2 mm |
|
7.50 kg / 7497.5 g
73.6 N
|
| 5 mm |
|
18.74 kg / 18743.8 g
183.9 N
|
| 10 mm |
|
29.99 kg / 29990.0 g
294.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 50x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
29.99 kg / 29990.0 g
294.2 N
|
OK |
| 40 °C | -2.2% |
29.33 kg / 29330.2 g
287.7 N
|
OK |
| 60 °C | -4.4% |
28.67 kg / 28670.4 g
281.3 N
|
|
| 80 °C | -6.6% |
28.01 kg / 28010.7 g
274.8 N
|
|
| 100 °C | -28.8% |
21.35 kg / 21352.9 g
209.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 50x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
70.06 kg / 70058 g
687.3 N
4 789 Gs
|
N/A |
| 1 mm |
65.83 kg / 65828 g
645.8 N
6 535 Gs
|
59.25 kg / 59245 g
581.2 N
~0 Gs
|
| 2 mm |
61.49 kg / 61492 g
603.2 N
6 316 Gs
|
55.34 kg / 55343 g
542.9 N
~0 Gs
|
| 3 mm |
57.20 kg / 57198 g
561.1 N
6 092 Gs
|
51.48 kg / 51478 g
505.0 N
~0 Gs
|
| 5 mm |
48.94 kg / 48940 g
480.1 N
5 635 Gs
|
44.05 kg / 44046 g
432.1 N
~0 Gs
|
| 10 mm |
31.64 kg / 31645 g
310.4 N
4 531 Gs
|
28.48 kg / 28480 g
279.4 N
~0 Gs
|
| 20 mm |
12.41 kg / 12412 g
121.8 N
2 838 Gs
|
11.17 kg / 11170 g
109.6 N
~0 Gs
|
| 50 mm |
1.07 kg / 1066 g
10.5 N
832 Gs
|
0.96 kg / 960 g
9.4 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 50x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 7.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Energia uderzenia (energia kinetyczna) - ostrzeżenie
MPL 50x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.29 km/h
(6.19 m/s)
|
1.44 J | |
| 30 mm |
35.10 km/h
(9.75 m/s)
|
3.56 J | |
| 50 mm |
45.12 km/h
(12.53 m/s)
|
5.89 J | |
| 100 mm |
63.77 km/h
(17.72 m/s)
|
11.77 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 50x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 50x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 32 980 Mx | 329.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 50x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 29.99 kg | Standard |
| Woda (dno rzeki) |
34.34 kg
(+4.35 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Zalety i wady magnesów neodymowych Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie 10 lat spadek mocy wynosi tylko ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) mają nowoczesny, metaliczny wygląd.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co gwarantuje skuteczność.
- Wersje specjalistyczne radzą sobie w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Wady
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Ryzyko korozji: bez osłony magnes ulegnie utlenieniu na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej strumień magnetyczny
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się gładkością
- bez żadnej szczeliny pomiędzy magnesem a stalą
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. okleiną lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Opór przy zsuwaniu magnesu po blasze jest standardowo kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj stali – stal miękka przyciąga najlepiej. Większa zawartość węgla redukują właściwości magnetyczne i siłę trzymania.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności tworzą dystans powietrzny.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. W wyższych temperaturach są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Udźwig mierzono z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Ponadto, nawet drobny odstęp między magnesem, a blachą redukuje nośność.
Instrukcja bezpiecznej obsługi magnesów
Łatwopalność
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Siła zgniatająca
Zagrożenie fizyczne: Siła przyciągania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Wpływ na zdrowie
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Zakaz zabawy
Sprzedaż wyłącznie dla dorosłych. Drobne magnesy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
Ryzyko uczulenia
Pewna grupa użytkowników posiada uczulenie na pierwiastek nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może skutkować zaczerwienienie skóry. Zalecamy używanie rękawic bezlateksowych.
Ryzyko rozmagnesowania
Standardowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Kruchość materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Ogromna siła
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Bądź przewidujący.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Kompas i GPS
Urządzenia nawigacyjne są wyjątkowo podatne na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
