MPL 50x20x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020165
GTIN/EAN: 5906301811718
Długość
50 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
75 g
Kierunek magnesowania
↑ osiowy
Udźwig
29.99 kg / 294.15 N
Indukcja magnetyczna
337.18 mT / 3372 Gs
Powłoka
[NiCuNi] nikiel
43.05 ZŁ z VAT / szt. + cena za transport
35.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 22 499 98 98
lub pisz poprzez
formularz kontaktowy
przez naszą stronę.
Masę a także formę magnesów neodymowych wyliczysz u nas w
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MPL 50x20x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 50x20x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020165 |
| GTIN/EAN | 5906301811718 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 50 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 75 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 29.99 kg / 294.15 N |
| Indukcja magnetyczna ~ ? | 337.18 mT / 3372 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu - raport
Przedstawione informacje stanowią rezultat symulacji inżynierskiej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 50x20x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3371 Gs
337.1 mT
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
krytyczny poziom |
| 1 mm |
3158 Gs
315.8 mT
|
26.32 kg / 58.03 lbs
26323.3 g / 258.2 N
|
krytyczny poziom |
| 2 mm |
2932 Gs
293.2 mT
|
22.69 kg / 50.02 lbs
22687.6 g / 222.6 N
|
krytyczny poziom |
| 3 mm |
2703 Gs
270.3 mT
|
19.29 kg / 42.52 lbs
19286.7 g / 189.2 N
|
krytyczny poziom |
| 5 mm |
2266 Gs
226.6 mT
|
13.55 kg / 29.86 lbs
13546.3 g / 132.9 N
|
krytyczny poziom |
| 10 mm |
1419 Gs
141.9 mT
|
5.31 kg / 11.71 lbs
5313.0 g / 52.1 N
|
średnie ryzyko |
| 15 mm |
908 Gs
90.8 mT
|
2.17 kg / 4.79 lbs
2174.5 g / 21.3 N
|
średnie ryzyko |
| 20 mm |
603 Gs
60.3 mT
|
0.96 kg / 2.12 lbs
961.0 g / 9.4 N
|
niskie ryzyko |
| 30 mm |
296 Gs
29.6 mT
|
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
|
niskie ryzyko |
| 50 mm |
97 Gs
9.7 mT
|
0.02 kg / 0.05 lbs
24.8 g / 0.2 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 50x20x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
|
| 1 mm | Stal (~0.2) |
5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
|
| 2 mm | Stal (~0.2) |
4.54 kg / 10.00 lbs
4538.0 g / 44.5 N
|
| 3 mm | Stal (~0.2) |
3.86 kg / 8.51 lbs
3858.0 g / 37.8 N
|
| 5 mm | Stal (~0.2) |
2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
|
| 10 mm | Stal (~0.2) |
1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
|
| 15 mm | Stal (~0.2) |
0.43 kg / 0.96 lbs
434.0 g / 4.3 N
|
| 20 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 0.10 lbs
46.0 g / 0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 50x20x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
9.00 kg / 19.83 lbs
8997.0 g / 88.3 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
3.00 kg / 6.61 lbs
2999.0 g / 29.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
15.00 kg / 33.06 lbs
14995.0 g / 147.1 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 50x20x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.50 kg / 3.31 lbs
1499.5 g / 14.7 N
|
| 1 mm |
|
3.75 kg / 8.26 lbs
3748.8 g / 36.8 N
|
| 2 mm |
|
7.50 kg / 16.53 lbs
7497.5 g / 73.6 N
|
| 3 mm |
|
11.25 kg / 24.79 lbs
11246.3 g / 110.3 N
|
| 5 mm |
|
18.74 kg / 41.32 lbs
18743.8 g / 183.9 N
|
| 10 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
| 11 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
| 12 mm |
|
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 50x20x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
|
OK |
| 40 °C | -2.2% |
29.33 kg / 64.66 lbs
29330.2 g / 287.7 N
|
OK |
| 60 °C | -4.4% |
28.67 kg / 63.21 lbs
28670.4 g / 281.3 N
|
|
| 80 °C | -6.6% |
28.01 kg / 61.75 lbs
28010.7 g / 274.8 N
|
|
| 100 °C | -28.8% |
21.35 kg / 47.07 lbs
21352.9 g / 209.5 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 50x20x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
70.06 kg / 154.45 lbs
4 789 Gs
|
10.51 kg / 23.17 lbs
10509 g / 103.1 N
|
N/A |
| 1 mm |
65.83 kg / 145.13 lbs
6 535 Gs
|
9.87 kg / 21.77 lbs
9874 g / 96.9 N
|
59.25 kg / 130.61 lbs
~0 Gs
|
| 2 mm |
61.49 kg / 135.57 lbs
6 316 Gs
|
9.22 kg / 20.34 lbs
9224 g / 90.5 N
|
55.34 kg / 122.01 lbs
~0 Gs
|
| 3 mm |
57.20 kg / 126.10 lbs
6 092 Gs
|
8.58 kg / 18.92 lbs
8580 g / 84.2 N
|
51.48 kg / 113.49 lbs
~0 Gs
|
| 5 mm |
48.94 kg / 107.89 lbs
5 635 Gs
|
7.34 kg / 16.18 lbs
7341 g / 72.0 N
|
44.05 kg / 97.10 lbs
~0 Gs
|
| 10 mm |
31.64 kg / 69.76 lbs
4 531 Gs
|
4.75 kg / 10.46 lbs
4747 g / 46.6 N
|
28.48 kg / 62.79 lbs
~0 Gs
|
| 20 mm |
12.41 kg / 27.36 lbs
2 838 Gs
|
1.86 kg / 4.10 lbs
1862 g / 18.3 N
|
11.17 kg / 24.63 lbs
~0 Gs
|
| 50 mm |
1.07 kg / 2.35 lbs
832 Gs
|
0.16 kg / 0.35 lbs
160 g / 1.6 N
|
0.96 kg / 2.12 lbs
~0 Gs
|
| 60 mm |
0.54 kg / 1.19 lbs
592 Gs
|
0.08 kg / 0.18 lbs
81 g / 0.8 N
|
0.49 kg / 1.07 lbs
~0 Gs
|
| 70 mm |
0.29 kg / 0.64 lbs
433 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 80 mm |
0.16 kg / 0.36 lbs
324 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.15 kg / 0.32 lbs
~0 Gs
|
| 90 mm |
0.10 kg / 0.21 lbs
248 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 100 mm |
0.06 kg / 0.13 lbs
194 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 50x20x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 15.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 12.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 9.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 7.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 7.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 3.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 50x20x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.29 km/h
(6.19 m/s)
|
1.44 J | |
| 30 mm |
35.10 km/h
(9.75 m/s)
|
3.56 J | |
| 50 mm |
45.12 km/h
(12.53 m/s)
|
5.89 J | |
| 100 mm |
63.77 km/h
(17.72 m/s)
|
11.77 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 50x20x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 50x20x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 32 980 Mx | 329.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 50x20x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 29.99 kg | Standard |
| Woda (dno rzeki) |
34.34 kg
(+4.35 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ułamek nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Plusy
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
- Są stabilne magnetycznie, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Łączą moc z estetyką – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich stosowanie w warunkach do 230°C (dotyczy odpowiednich serii).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
- Pełnią kluczową rolę w przemyśle, będąc sercem generatorów, pamięci masowych i urządzeń ratujących życie.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, jedynym słusznym wyborem są magnesy w gumowej otulinie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co się na to składa?
- na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się równą strukturą
- przy zerowej szczelinie (bez zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Udźwig w praktyce – czynniki wpływu
- Dystans (między magnesem a blachą), gdyż nawet niewielka przerwa (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, korozji czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje dużo słabiej (zazwyczaj ok. 20-30% siły nominalnej).
- Grubość stali – za chuda płyta nie przyjmuje całego pola, przez co część strumienia jest tracona na drugą stronę.
- Rodzaj materiału – idealnym podłożem jest czysta stal żelazna. Stale hartowane mogą generować mniejszy udźwig.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Czynnik termiczny – gorące środowisko osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy siłach prostopadłych, z kolei przy siłach działających równolegle udźwig jest mniejszy nawet pięciokrotnie. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
BHP przy magnesach
Uczulenie na powłokę
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może powodować zaczerwienienie skóry. Wskazane jest noszenie rękawic bezlateksowych.
Bezpieczny dystans
Potężne oddziaływanie może zniszczyć zapis na kartach płatniczych, dyskach twardych i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i łączą się z impetem, często szybciej niż zdążysz zareagować.
Niebezpieczeństwo dla rozruszników
Dla posiadaczy implantów: Silne pole magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Zagrożenie dla nawigacji
Pamiętaj: magnesy neodymowe generują pole, które zakłócają systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Kruchość materiału
Mimo metalicznego wyglądu, neodym jest delikatny i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Uwaga: zadławienie
Magnesy neodymowe nie są przeznaczone dla dzieci. Inhalacja dwóch lub więcej magnesów może doprowadzić do ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga pilnej interwencji chirurgicznej.
Trwała utrata siły
Typowe magnesy neodymowe (typ N) tracą właściwości po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Zagrożenie zapłonem
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce w ułamku sekundy. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
