Magnesy neodymowe – najmocniejsze na rynku

Szukasz ogromnej mocy w małym rozmiarze? Oferujemy kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do użytku w domu, warsztatu oraz modelarstwa. Sprawdź naszą ofertę z szybką wysyłką.

poznaj pełną ofertę

Zestawy do magnet fishing (hobbystów)

Zacznij swoje hobby polegającą na poszukiwaniu skarbów pod wodą! Nasze specjalistyczne uchwyty (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Nierdzewna konstrukcja oraz wzmocnione liny są niezawodne w każdej wodzie.

znajdź sprzęt do poszukiwań

Niezawodne uchwyty z gwintem

Sprawdzone rozwiązania do montażu bezinwazyjnego. Uchwyty z gwintem (M8, M10, M12) gwarantują błyskawiczną organizację pracy na magazynach. Są niezastąpione przy instalacji oświetlenia, sensorów oraz reklam.

zobacz parametry techniczne

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 50x20x10 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020165

GTIN/EAN: 5906301811718

5.00

Długość

50 mm [±0,1 mm]

Szerokość

20 mm [±0,1 mm]

Wysokość

10 mm [±0,1 mm]

Waga

75 g

Kierunek magnesowania

↑ osiowy

Udźwig

29.99 kg / 294.15 N

Indukcja magnetyczna

337.18 mT / 3372 Gs

Powłoka

[NiCuNi] nikiel

43.05 z VAT / szt. + cena za transport

35.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
35.00 ZŁ
43.05 ZŁ
cena od 20 szt.
32.90 ZŁ
40.47 ZŁ
cena od 80 szt.
30.80 ZŁ
37.88 ZŁ
Masz pytania?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 ewentualnie skontaktuj się za pomocą formularz zapytania na naszej stronie.
Moc i kształt magnesów zobaczysz w naszym kalkulatorze magnetycznym.

Realizacja tego samego dnia przy zamówieniu do 14:00.

Szczegóły techniczne - MPL 50x20x10 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 50x20x10 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020165
GTIN/EAN 5906301811718
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 50 mm [±0,1 mm]
Szerokość 20 mm [±0,1 mm]
Wysokość 10 mm [±0,1 mm]
Waga 75 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 29.99 kg / 294.15 N
Indukcja magnetyczna ~ ? 337.18 mT / 3372 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 50x20x10 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu neodymowego - raport

Przedstawione wartości są bezpośredni efekt analizy matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - spadek mocy
MPL 50x20x10 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 3371 Gs
337.1 mT
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
niebezpieczny!
1 mm 3158 Gs
315.8 mT
26.32 kg / 58.03 lbs
26323.3 g / 258.2 N
niebezpieczny!
2 mm 2932 Gs
293.2 mT
22.69 kg / 50.02 lbs
22687.6 g / 222.6 N
niebezpieczny!
3 mm 2703 Gs
270.3 mT
19.29 kg / 42.52 lbs
19286.7 g / 189.2 N
niebezpieczny!
5 mm 2266 Gs
226.6 mT
13.55 kg / 29.86 lbs
13546.3 g / 132.9 N
niebezpieczny!
10 mm 1419 Gs
141.9 mT
5.31 kg / 11.71 lbs
5313.0 g / 52.1 N
średnie ryzyko
15 mm 908 Gs
90.8 mT
2.17 kg / 4.79 lbs
2174.5 g / 21.3 N
średnie ryzyko
20 mm 603 Gs
60.3 mT
0.96 kg / 2.12 lbs
961.0 g / 9.4 N
bezpieczny
30 mm 296 Gs
29.6 mT
0.23 kg / 0.51 lbs
231.0 g / 2.3 N
bezpieczny
50 mm 97 Gs
9.7 mT
0.02 kg / 0.05 lbs
24.8 g / 0.2 N
bezpieczny

Tabela 2: Równoległa siła zsuwania (pion)
MPL 50x20x10 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
1 mm Stal (~0.2) 5.26 kg / 11.61 lbs
5264.0 g / 51.6 N
2 mm Stal (~0.2) 4.54 kg / 10.00 lbs
4538.0 g / 44.5 N
3 mm Stal (~0.2) 3.86 kg / 8.51 lbs
3858.0 g / 37.8 N
5 mm Stal (~0.2) 2.71 kg / 5.97 lbs
2710.0 g / 26.6 N
10 mm Stal (~0.2) 1.06 kg / 2.34 lbs
1062.0 g / 10.4 N
15 mm Stal (~0.2) 0.43 kg / 0.96 lbs
434.0 g / 4.3 N
20 mm Stal (~0.2) 0.19 kg / 0.42 lbs
192.0 g / 1.9 N
30 mm Stal (~0.2) 0.05 kg / 0.10 lbs
46.0 g / 0.5 N
50 mm Stal (~0.2) 0.00 kg / 0.01 lbs
4.0 g / 0.0 N

Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 50x20x10 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
9.00 kg / 19.83 lbs
8997.0 g / 88.3 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
6.00 kg / 13.22 lbs
5998.0 g / 58.8 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
3.00 kg / 6.61 lbs
2999.0 g / 29.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
15.00 kg / 33.06 lbs
14995.0 g / 147.1 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 50x20x10 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
5%
1.50 kg / 3.31 lbs
1499.5 g / 14.7 N
1 mm
13%
3.75 kg / 8.26 lbs
3748.8 g / 36.8 N
2 mm
25%
7.50 kg / 16.53 lbs
7497.5 g / 73.6 N
3 mm
38%
11.25 kg / 24.79 lbs
11246.3 g / 110.3 N
5 mm
63%
18.74 kg / 41.32 lbs
18743.8 g / 183.9 N
10 mm
100%
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
11 mm
100%
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
12 mm
100%
29.99 kg / 66.12 lbs
29990.0 g / 294.2 N

Tabela 5: Praca w cieple (stabilność) - próg odporności
MPL 50x20x10 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 29.99 kg / 66.12 lbs
29990.0 g / 294.2 N
OK
40 °C -2.2% 29.33 kg / 64.66 lbs
29330.2 g / 287.7 N
OK
60 °C -4.4% 28.67 kg / 63.21 lbs
28670.4 g / 281.3 N
80 °C -6.6% 28.01 kg / 61.75 lbs
28010.7 g / 274.8 N
100 °C -28.8% 21.35 kg / 47.07 lbs
21352.9 g / 209.5 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 50x20x10 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła zsuwania (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 70.06 kg / 154.45 lbs
4 789 Gs
10.51 kg / 23.17 lbs
10509 g / 103.1 N
N/A
1 mm 65.83 kg / 145.13 lbs
6 535 Gs
9.87 kg / 21.77 lbs
9874 g / 96.9 N
59.25 kg / 130.61 lbs
~0 Gs
2 mm 61.49 kg / 135.57 lbs
6 316 Gs
9.22 kg / 20.34 lbs
9224 g / 90.5 N
55.34 kg / 122.01 lbs
~0 Gs
3 mm 57.20 kg / 126.10 lbs
6 092 Gs
8.58 kg / 18.92 lbs
8580 g / 84.2 N
51.48 kg / 113.49 lbs
~0 Gs
5 mm 48.94 kg / 107.89 lbs
5 635 Gs
7.34 kg / 16.18 lbs
7341 g / 72.0 N
44.05 kg / 97.10 lbs
~0 Gs
10 mm 31.64 kg / 69.76 lbs
4 531 Gs
4.75 kg / 10.46 lbs
4747 g / 46.6 N
28.48 kg / 62.79 lbs
~0 Gs
20 mm 12.41 kg / 27.36 lbs
2 838 Gs
1.86 kg / 4.10 lbs
1862 g / 18.3 N
11.17 kg / 24.63 lbs
~0 Gs
50 mm 1.07 kg / 2.35 lbs
832 Gs
0.16 kg / 0.35 lbs
160 g / 1.6 N
0.96 kg / 2.12 lbs
~0 Gs
60 mm 0.54 kg / 1.19 lbs
592 Gs
0.08 kg / 0.18 lbs
81 g / 0.8 N
0.49 kg / 1.07 lbs
~0 Gs
70 mm 0.29 kg / 0.64 lbs
433 Gs
0.04 kg / 0.10 lbs
43 g / 0.4 N
0.26 kg / 0.57 lbs
~0 Gs
80 mm 0.16 kg / 0.36 lbs
324 Gs
0.02 kg / 0.05 lbs
24 g / 0.2 N
0.15 kg / 0.32 lbs
~0 Gs
90 mm 0.10 kg / 0.21 lbs
248 Gs
0.01 kg / 0.03 lbs
14 g / 0.1 N
0.09 kg / 0.19 lbs
~0 Gs
100 mm 0.06 kg / 0.13 lbs
194 Gs
0.01 kg / 0.02 lbs
9 g / 0.1 N
0.05 kg / 0.11 lbs
~0 Gs

Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 50x20x10 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 15.5 cm
Implant słuchowy 10 Gs (1.0 mT) 12.0 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 9.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 7.5 cm
Pilot do auta 50 Gs (5.0 mT) 7.0 cm
Karta płatnicza 400 Gs (40.0 mT) 3.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 2.5 cm

Tabela 8: Energia uderzenia (energia kinetyczna) - skutki zderzenia
MPL 50x20x10 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 22.29 km/h
(6.19 m/s)
1.44 J
30 mm 35.10 km/h
(9.75 m/s)
3.56 J
50 mm 45.12 km/h
(12.53 m/s)
5.89 J
100 mm 63.77 km/h
(17.72 m/s)
11.77 J

Tabela 9: Parametry powłoki (trwałość)
MPL 50x20x10 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Flux)
MPL 50x20x10 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 32 980 Mx 329.8 µWb
Współczynnik Pc 0.38 Niski (Płaski)

Tabela 11: Zastosowanie podwodne
MPL 50x20x10 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 29.99 kg Standard
Woda (dno rzeki) 34.34 kg
(+4.35 kg zysk z wyporności)
+14.5%
Uwaga na korozję: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Montaż na ścianie (ześlizg)

*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły oderwania.

2. Wpływ grubości blachy

*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie redukuje udźwig magnesu.

3. Stabilność termiczna

*W klasie N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38

Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020165-2026
Szybki konwerter jednostek
Siła oderwania

Pole magnetyczne

Sprawdź inne oferty

Produkt ten to bardzo silny magnes w kształcie płytki wykonany z materiału NdFeB, co przy wymiarach 50x20x10 mm i wadze 75 g gwarantuje najwyższą jakość połączenia. Jako sztabka magnetyczna o dużej mocy (ok. 29.99 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Dodatkowo, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Kluczem do sukcesu jest przesunięcie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 50x20x10 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Świetnie sprawdzają się jako zapięcia pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Do montażu magnesów płaskich MPL 50x20x10 / N38 najlepiej używać kleje dwuskładnikowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 50x20x10 / N38 jest magnesowany przez grubość (wymiar 10 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 50x20x10 mm, co przy wadze 75 g czyni go elementem o imponującej gęstości energii. Jest to blok magnetyczny o gabarytach 50x20x10 mm i masie własnej 75 g, gotowy do pracy w temperaturze do 80°C. Produkt spełnia normy dla magnesów klasy N38.

Wady oraz zalety magnesów z neodymu Nd2Fe14B.

Plusy

Warto zwrócić uwagę, że obok ekstremalnej siły, produkty te cechują się następującymi zaletami:
  • Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie tracą na sile o niezauważalny 1%.
  • Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
  • Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
  • Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie nawet małych elementów.
  • Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
  • Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w inżynierii.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
  • Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w ciasnych przestrzeniach.

Ograniczenia

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Delikatność mechaniczna to ich słaba strona. Mogą pęknąć przy upadku, dlatego zalecamy osłony lub uchwyty.
  • Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
  • Są podatne na rdzewienie w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
  • Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy badaniach lekarskich.
  • Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Charakterystyka udźwigu

Maksymalna siła przyciągania magnesuco się na to składa?

Widoczny w opisie parametr udźwigu reprezentuje wartości maksymalnej, którą uzyskano w środowisku optymalnym, czyli:
  • przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
  • posiadającej grubość min. 10 mm aby uniknąć nasycenia
  • charakteryzującej się gładkością
  • przy bezpośrednim styku (bez powłok)
  • podczas odrywania w kierunku pionowym do powierzchni mocowania
  • w temperaturze pokojowej

Udźwig w warunkach rzeczywistych – czynniki

Warto wiedzieć, iż udźwig roboczy będzie inne zależnie od następujących czynników, w kolejności ważności:
  • Szczelina – obecność jakiejkolwiek warstwy (rdza, brud, powietrze) działa jak izolator, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
  • Kąt przyłożenia siły – maksymalny parametr osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie mniejsza (ok. 1/5 udźwigu).
  • Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
  • Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Domieszki stopowe redukują przenikalność magnetyczną i udźwig.
  • Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
  • Temperatura – wzrost temperatury skutkuje osłabieniem siły. Warto sprawdzić limit termiczny dla danego modelu.

Pomiar udźwigu realizowano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet drobny odstęp między magnesem, a blachą zmniejsza siłę trzymania.

Zasady BHP dla użytkowników magnesów
Ostrożność wymagana

Stosuj magnesy z rozwagą. Ich potężna moc może zszokować nawet doświadczonych użytkowników. Planuj ruchy i nie lekceważ ich siły.

Uczulenie na powłokę

Uwaga na nikiel: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.

Ryzyko połknięcia

Koniecznie chroń magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest wysokie, a konsekwencje zwarcia magnesów wewnątrz organizmu są dramatyczne.

Maksymalna temperatura

Typowe magnesy neodymowe (klasa N) tracą właściwości po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.

Samozapłon

Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.

Implanty kardiologiczne

Pacjenci z kardiowerterem muszą zachować bezpieczną odległość od magnesów. Pole magnetyczne może zatrzymać działanie urządzenia ratującego życie.

Pole magnetyczne a elektronika

Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).

Siła zgniatająca

Silne magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni między dwa silne magnesy.

Smartfony i tablety

Pamiętaj: magnesy neodymowe generują pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.

Rozprysk materiału

Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając kawałki metalu w powietrze. Noś okulary.

Bezpieczeństwo! Szczegółowe omówienie o ryzyku w artykule: Niebezpieczne magnesy neodymowe.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98