MPL 42x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020163
GTIN/EAN: 5906301811695
Długość
42 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
31.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.06 kg / 108.46 N
Indukcja magnetyczna
203.37 mT / 2034 Gs
Powłoka
[NiCuNi] nikiel
15.62 ZŁ z VAT / szt. + cena za transport
12.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie napisz poprzez
formularz
na naszej stronie.
Właściwości oraz kształt magnesów zweryfikujesz w naszym
kalkulatorze mocy.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Dane techniczne produktu - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020163 |
| GTIN/EAN | 5906301811695 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 42 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 31.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.06 kg / 108.46 N |
| Indukcja magnetyczna ~ ? | 203.37 mT / 2034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - dane
Przedstawione dane są rezultat kalkulacji matematycznej. Wartości bazują na modelach dla materiału Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - charakterystyka
MPL 42x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2033 Gs
203.3 mT
|
11.06 kg / 11060.0 g
108.5 N
|
miażdżący |
| 1 mm |
1938 Gs
193.8 mT
|
10.05 kg / 10049.3 g
98.6 N
|
miażdżący |
| 2 mm |
1823 Gs
182.3 mT
|
8.89 kg / 8888.2 g
87.2 N
|
mocny |
| 3 mm |
1696 Gs
169.6 mT
|
7.69 kg / 7691.7 g
75.5 N
|
mocny |
| 5 mm |
1433 Gs
143.3 mT
|
5.49 kg / 5490.3 g
53.9 N
|
mocny |
| 10 mm |
885 Gs
88.5 mT
|
2.09 kg / 2093.5 g
20.5 N
|
mocny |
| 15 mm |
547 Gs
54.7 mT
|
0.80 kg / 799.6 g
7.8 N
|
bezpieczny |
| 20 mm |
350 Gs
35.0 mT
|
0.33 kg / 327.0 g
3.2 N
|
bezpieczny |
| 30 mm |
160 Gs
16.0 mT
|
0.07 kg / 68.5 g
0.7 N
|
bezpieczny |
| 50 mm |
48 Gs
4.8 mT
|
0.01 kg / 6.2 g
0.1 N
|
bezpieczny |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 42x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.21 kg / 2212.0 g
21.7 N
|
| 1 mm | Stal (~0.2) |
2.01 kg / 2010.0 g
19.7 N
|
| 2 mm | Stal (~0.2) |
1.78 kg / 1778.0 g
17.4 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 1538.0 g
15.1 N
|
| 5 mm | Stal (~0.2) |
1.10 kg / 1098.0 g
10.8 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 418.0 g
4.1 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 160.0 g
1.6 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 66.0 g
0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 42x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.32 kg / 3318.0 g
32.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.21 kg / 2212.0 g
21.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.11 kg / 1106.0 g
10.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.53 kg / 5530.0 g
54.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 42x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.55 kg / 553.0 g
5.4 N
|
| 1 mm |
|
1.38 kg / 1382.5 g
13.6 N
|
| 2 mm |
|
2.77 kg / 2765.0 g
27.1 N
|
| 5 mm |
|
6.91 kg / 6912.5 g
67.8 N
|
| 10 mm |
|
11.06 kg / 11060.0 g
108.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 42x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.06 kg / 11060.0 g
108.5 N
|
OK |
| 40 °C | -2.2% |
10.82 kg / 10816.7 g
106.1 N
|
OK |
| 60 °C | -4.4% |
10.57 kg / 10573.4 g
103.7 N
|
|
| 80 °C | -6.6% |
10.33 kg / 10330.0 g
101.3 N
|
|
| 100 °C | -28.8% |
7.87 kg / 7874.7 g
77.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 42x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
21.41 kg / 21412 g
210.1 N
3 465 Gs
|
N/A |
| 1 mm |
20.49 kg / 20491 g
201.0 N
3 978 Gs
|
18.44 kg / 18442 g
180.9 N
~0 Gs
|
| 2 mm |
19.46 kg / 19455 g
190.9 N
3 877 Gs
|
17.51 kg / 17510 g
171.8 N
~0 Gs
|
| 3 mm |
18.35 kg / 18352 g
180.0 N
3 765 Gs
|
16.52 kg / 16517 g
162.0 N
~0 Gs
|
| 5 mm |
16.05 kg / 16047 g
157.4 N
3 521 Gs
|
14.44 kg / 14442 g
141.7 N
~0 Gs
|
| 10 mm |
10.63 kg / 10629 g
104.3 N
2 865 Gs
|
9.57 kg / 9566 g
93.8 N
~0 Gs
|
| 20 mm |
4.05 kg / 4053 g
39.8 N
1 769 Gs
|
3.65 kg / 3648 g
35.8 N
~0 Gs
|
| 50 mm |
0.28 kg / 279 g
2.7 N
465 Gs
|
0.25 kg / 252 g
2.5 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 42x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 5.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 42x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.01 km/h
(5.84 m/s)
|
0.54 J | |
| 30 mm |
32.86 km/h
(9.13 m/s)
|
1.31 J | |
| 50 mm |
42.27 km/h
(11.74 m/s)
|
2.17 J | |
| 100 mm |
59.76 km/h
(16.60 m/s)
|
4.34 J |
Tabela 9: Odporność na korozję
MPL 42x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 42x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 614 Mx | 186.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 42x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.06 kg | Standard |
| Woda (dno rzeki) |
12.66 kg
(+1.60 kg Zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie ogranicza udźwig magnesu.
3. Praca w cieple
*W klasie N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Wady oraz zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, dopasowanych do wymagań klienta.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz przemyśle komputerowym.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Wady
- Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Charakterystyka udźwigu
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- z wykorzystaniem blachy ze miękkiej stali, pełniącej rolę element zamykający obwód
- o grubości wynoszącej minimum 10 mm
- o idealnie gładkiej powierzchni styku
- przy całkowitym braku odstępu (bez powłok)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze pokojowej
Udźwig w praktyce – czynniki wpływu
- Dystans – występowanie ciała obcego (farba, taśma, szczelina) przerywa obwód magnetyczny, co obniża udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
- Materiał blachy – stal miękka przyciąga najlepiej. Stale stopowe redukują właściwości magnetyczne i udźwig.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięć razy. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Zagrożenie zapłonem
Proszek generowany podczas obróbki magnesów jest samozapalny. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
Zakaz zabawy
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do perforacji jelit. Przechowuj z dala od niepowołanych osób.
Ryzyko rozmagnesowania
Typowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Proces ten jest nieodwracalny.
Karty i dyski
Unikaj zbliżania magnesów do portfela, laptopa czy ekranu. Magnes może nieodwracalnie zepsuć te urządzenia oraz wymazać paski magnetyczne z kart.
Moc przyciągania
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Kompas i GPS
Silne pole magnetyczne destabilizuje funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Trzymaj z dala magnesów do smartfona, aby nie uszkodzić czujników.
Uczulenie na powłokę
Informacja alergiczna: powłoka Ni-Cu-Ni ma w składzie nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Ryzyko pęknięcia
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Unikaj uderzeń, gdyż magnes może się pokruszyć na drobiny.
Urazy ciała
Silne magnesy mogą zmiażdżyć palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.
Zagrożenie życia
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
