MPL 42x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020163
GTIN/EAN: 5906301811695
Długość
42 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
31.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.06 kg / 108.46 N
Indukcja magnetyczna
203.37 mT / 2034 Gs
Powłoka
[NiCuNi] nikiel
15.62 ZŁ z VAT / szt. + cena za transport
12.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
ewentualnie pisz za pomocą
formularz
w sekcji kontakt.
Parametry a także wygląd elementów magnetycznych obliczysz dzięki naszemu
kalkulatorze siły.
Zamów do 14:00, a wyślemy dziś!
Parametry techniczne produktu - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020163 |
| GTIN/EAN | 5906301811695 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 42 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 31.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.06 kg / 108.46 N |
| Indukcja magnetyczna ~ ? | 203.37 mT / 2034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Przedstawione wartości są rezultat analizy fizycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Realne parametry mogą się różnić. Prosimy traktować te dane jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - wykres oddziaływania
MPL 42x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2033 Gs
203.3 mT
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
niebezpieczny! |
| 1 mm |
1938 Gs
193.8 mT
|
10.05 kg / 22.15 lbs
10049.3 g / 98.6 N
|
niebezpieczny! |
| 2 mm |
1823 Gs
182.3 mT
|
8.89 kg / 19.60 lbs
8888.2 g / 87.2 N
|
średnie ryzyko |
| 3 mm |
1696 Gs
169.6 mT
|
7.69 kg / 16.96 lbs
7691.7 g / 75.5 N
|
średnie ryzyko |
| 5 mm |
1433 Gs
143.3 mT
|
5.49 kg / 12.10 lbs
5490.3 g / 53.9 N
|
średnie ryzyko |
| 10 mm |
885 Gs
88.5 mT
|
2.09 kg / 4.62 lbs
2093.5 g / 20.5 N
|
średnie ryzyko |
| 15 mm |
547 Gs
54.7 mT
|
0.80 kg / 1.76 lbs
799.6 g / 7.8 N
|
słaby uchwyt |
| 20 mm |
350 Gs
35.0 mT
|
0.33 kg / 0.72 lbs
327.0 g / 3.2 N
|
słaby uchwyt |
| 30 mm |
160 Gs
16.0 mT
|
0.07 kg / 0.15 lbs
68.5 g / 0.7 N
|
słaby uchwyt |
| 50 mm |
48 Gs
4.8 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (ściana)
MPL 42x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.21 kg / 4.88 lbs
2212.0 g / 21.7 N
|
| 1 mm | Stal (~0.2) |
2.01 kg / 4.43 lbs
2010.0 g / 19.7 N
|
| 2 mm | Stal (~0.2) |
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 3.39 lbs
1538.0 g / 15.1 N
|
| 5 mm | Stal (~0.2) |
1.10 kg / 2.42 lbs
1098.0 g / 10.8 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 42x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.32 kg / 7.31 lbs
3318.0 g / 32.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.21 kg / 4.88 lbs
2212.0 g / 21.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.11 kg / 2.44 lbs
1106.0 g / 10.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.53 kg / 12.19 lbs
5530.0 g / 54.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 42x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.55 kg / 1.22 lbs
553.0 g / 5.4 N
|
| 1 mm |
|
1.38 kg / 3.05 lbs
1382.5 g / 13.6 N
|
| 2 mm |
|
2.77 kg / 6.10 lbs
2765.0 g / 27.1 N
|
| 3 mm |
|
4.15 kg / 9.14 lbs
4147.5 g / 40.7 N
|
| 5 mm |
|
6.91 kg / 15.24 lbs
6912.5 g / 67.8 N
|
| 10 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
| 11 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
| 12 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - limit termiczny
MPL 42x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
OK |
| 40 °C | -2.2% |
10.82 kg / 23.85 lbs
10816.7 g / 106.1 N
|
OK |
| 60 °C | -4.4% |
10.57 kg / 23.31 lbs
10573.4 g / 103.7 N
|
|
| 80 °C | -6.6% |
10.33 kg / 22.77 lbs
10330.0 g / 101.3 N
|
|
| 100 °C | -28.8% |
7.87 kg / 17.36 lbs
7874.7 g / 77.3 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 42x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.41 kg / 47.21 lbs
3 465 Gs
|
3.21 kg / 7.08 lbs
3212 g / 31.5 N
|
N/A |
| 1 mm |
20.49 kg / 45.17 lbs
3 978 Gs
|
3.07 kg / 6.78 lbs
3074 g / 30.2 N
|
18.44 kg / 40.66 lbs
~0 Gs
|
| 2 mm |
19.46 kg / 42.89 lbs
3 877 Gs
|
2.92 kg / 6.43 lbs
2918 g / 28.6 N
|
17.51 kg / 38.60 lbs
~0 Gs
|
| 3 mm |
18.35 kg / 40.46 lbs
3 765 Gs
|
2.75 kg / 6.07 lbs
2753 g / 27.0 N
|
16.52 kg / 36.41 lbs
~0 Gs
|
| 5 mm |
16.05 kg / 35.38 lbs
3 521 Gs
|
2.41 kg / 5.31 lbs
2407 g / 23.6 N
|
14.44 kg / 31.84 lbs
~0 Gs
|
| 10 mm |
10.63 kg / 23.43 lbs
2 865 Gs
|
1.59 kg / 3.52 lbs
1594 g / 15.6 N
|
9.57 kg / 21.09 lbs
~0 Gs
|
| 20 mm |
4.05 kg / 8.94 lbs
1 769 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 50 mm |
0.28 kg / 0.62 lbs
465 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 60 mm |
0.13 kg / 0.29 lbs
320 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.15 lbs
228 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
167 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
125 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
96 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 42x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 42x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.01 km/h
(5.84 m/s)
|
0.54 J | |
| 30 mm |
32.86 km/h
(9.13 m/s)
|
1.31 J | |
| 50 mm |
42.27 km/h
(11.74 m/s)
|
2.17 J | |
| 100 mm |
59.76 km/h
(16.60 m/s)
|
4.34 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 42x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 42x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 614 Mx | 186.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 42x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.06 kg | Standard |
| Woda (dno rzeki) |
12.66 kg
(+1.60 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na powierzchni pionowej magnes zachowa tylko ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
UMP 75x25 [M10x3] GW F200 GOLD DUAL / N42 - uchwyty magnetyczne do poszukiwań
Wady i zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji zmniejszenie udźwigu to znikome ~1%.
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Dzięki powłoce (NiCuNi, złoto, srebro) mają estetyczny, metaliczny wygląd.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w przemyśle.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, jedynym słusznym wyborem są magnesy w plastikowej osłonie.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- z płaszczyzną idealnie równą
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze pokojowej
Praktyczny udźwig: czynniki wpływające
- Szczelina powietrzna (między magnesem a blachą), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości maksymalnej.
- Grubość metalu – cienki materiał nie pozwala na pełne wykorzystanie magnesu. Część pola magnetycznego przechodzi przez materiał, zamiast zamienić się w udźwig.
- Gatunek stali – idealnym podłożem jest stal o wysokiej przenikalności. Żeliwo mogą przyciągać słabiej.
- Gładkość podłoża – im równiejsza blacha, tym lepsze przyleganie i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Warunki termiczne – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano stosując gładkiej blachy o optymalnej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy próbie przesunięcia magnesu udźwig jest mniejszy nawet 5 razy. Dodatkowo, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
Bezpieczna praca z magnesami neodymowymi
Dla uczulonych
Pewna grupa użytkowników wykazuje nadwrażliwość na pierwiastek nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Zalecamy używanie rękawic bezlateksowych.
Ostrożność wymagana
Przed użyciem, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Poważne obrażenia
Dbaj o palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Ryzyko rozmagnesowania
Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i udźwig.
Implanty kardiologiczne
Dla posiadaczy implantów: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
Zagrożenie zapłonem
Pył powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach w warunkach domowych.
Tylko dla dorosłych
Neodymowe magnesy nie służą do zabawy. Inhalacja kilku magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stanowi bezpośrednie zagrożenie życia i wymaga natychmiastowej operacji.
Magnesy są kruche
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Zakłócenia GPS i telefonów
Intensywne promieniowanie magnetyczne destabilizuje działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Bezpieczny dystans
Nie przykładaj magnesów do portfela, komputera czy ekranu. Magnes może zniszczyć te urządzenia oraz skasować dane z kart.
