MPL 42x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020163
GTIN/EAN: 5906301811695
Długość
42 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
31.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.06 kg / 108.46 N
Indukcja magnetyczna
203.37 mT / 2034 Gs
Powłoka
[NiCuNi] nikiel
15.62 ZŁ z VAT / szt. + cena za transport
12.70 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się korzystając z
formularz kontaktowy
na stronie kontaktowej.
Siłę a także kształt magnesów skontrolujesz u nas w
naszym kalkulatorze magnetycznym.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 42x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 42x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020163 |
| GTIN/EAN | 5906301811695 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 42 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 31.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.06 kg / 108.46 N |
| Indukcja magnetyczna ~ ? | 203.37 mT / 2034 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Niniejsze informacje stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te dane jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 42x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2033 Gs
203.3 mT
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
niebezpieczny! |
| 1 mm |
1938 Gs
193.8 mT
|
10.05 kg / 22.15 lbs
10049.3 g / 98.6 N
|
niebezpieczny! |
| 2 mm |
1823 Gs
182.3 mT
|
8.89 kg / 19.60 lbs
8888.2 g / 87.2 N
|
średnie ryzyko |
| 3 mm |
1696 Gs
169.6 mT
|
7.69 kg / 16.96 lbs
7691.7 g / 75.5 N
|
średnie ryzyko |
| 5 mm |
1433 Gs
143.3 mT
|
5.49 kg / 12.10 lbs
5490.3 g / 53.9 N
|
średnie ryzyko |
| 10 mm |
885 Gs
88.5 mT
|
2.09 kg / 4.62 lbs
2093.5 g / 20.5 N
|
średnie ryzyko |
| 15 mm |
547 Gs
54.7 mT
|
0.80 kg / 1.76 lbs
799.6 g / 7.8 N
|
słaby uchwyt |
| 20 mm |
350 Gs
35.0 mT
|
0.33 kg / 0.72 lbs
327.0 g / 3.2 N
|
słaby uchwyt |
| 30 mm |
160 Gs
16.0 mT
|
0.07 kg / 0.15 lbs
68.5 g / 0.7 N
|
słaby uchwyt |
| 50 mm |
48 Gs
4.8 mT
|
0.01 kg / 0.01 lbs
6.2 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 42x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.21 kg / 4.88 lbs
2212.0 g / 21.7 N
|
| 1 mm | Stal (~0.2) |
2.01 kg / 4.43 lbs
2010.0 g / 19.7 N
|
| 2 mm | Stal (~0.2) |
1.78 kg / 3.92 lbs
1778.0 g / 17.4 N
|
| 3 mm | Stal (~0.2) |
1.54 kg / 3.39 lbs
1538.0 g / 15.1 N
|
| 5 mm | Stal (~0.2) |
1.10 kg / 2.42 lbs
1098.0 g / 10.8 N
|
| 10 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
160.0 g / 1.6 N
|
| 20 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
14.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 42x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.32 kg / 7.31 lbs
3318.0 g / 32.5 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.21 kg / 4.88 lbs
2212.0 g / 21.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.11 kg / 2.44 lbs
1106.0 g / 10.8 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.53 kg / 12.19 lbs
5530.0 g / 54.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 42x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.55 kg / 1.22 lbs
553.0 g / 5.4 N
|
| 1 mm |
|
1.38 kg / 3.05 lbs
1382.5 g / 13.6 N
|
| 2 mm |
|
2.77 kg / 6.10 lbs
2765.0 g / 27.1 N
|
| 3 mm |
|
4.15 kg / 9.14 lbs
4147.5 g / 40.7 N
|
| 5 mm |
|
6.91 kg / 15.24 lbs
6912.5 g / 67.8 N
|
| 10 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
| 11 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
| 12 mm |
|
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 42x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.06 kg / 24.38 lbs
11060.0 g / 108.5 N
|
OK |
| 40 °C | -2.2% |
10.82 kg / 23.85 lbs
10816.7 g / 106.1 N
|
OK |
| 60 °C | -4.4% |
10.57 kg / 23.31 lbs
10573.4 g / 103.7 N
|
|
| 80 °C | -6.6% |
10.33 kg / 22.77 lbs
10330.0 g / 101.3 N
|
|
| 100 °C | -28.8% |
7.87 kg / 17.36 lbs
7874.7 g / 77.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 42x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.41 kg / 47.21 lbs
3 465 Gs
|
3.21 kg / 7.08 lbs
3212 g / 31.5 N
|
N/A |
| 1 mm |
20.49 kg / 45.17 lbs
3 978 Gs
|
3.07 kg / 6.78 lbs
3074 g / 30.2 N
|
18.44 kg / 40.66 lbs
~0 Gs
|
| 2 mm |
19.46 kg / 42.89 lbs
3 877 Gs
|
2.92 kg / 6.43 lbs
2918 g / 28.6 N
|
17.51 kg / 38.60 lbs
~0 Gs
|
| 3 mm |
18.35 kg / 40.46 lbs
3 765 Gs
|
2.75 kg / 6.07 lbs
2753 g / 27.0 N
|
16.52 kg / 36.41 lbs
~0 Gs
|
| 5 mm |
16.05 kg / 35.38 lbs
3 521 Gs
|
2.41 kg / 5.31 lbs
2407 g / 23.6 N
|
14.44 kg / 31.84 lbs
~0 Gs
|
| 10 mm |
10.63 kg / 23.43 lbs
2 865 Gs
|
1.59 kg / 3.52 lbs
1594 g / 15.6 N
|
9.57 kg / 21.09 lbs
~0 Gs
|
| 20 mm |
4.05 kg / 8.94 lbs
1 769 Gs
|
0.61 kg / 1.34 lbs
608 g / 6.0 N
|
3.65 kg / 8.04 lbs
~0 Gs
|
| 50 mm |
0.28 kg / 0.62 lbs
465 Gs
|
0.04 kg / 0.09 lbs
42 g / 0.4 N
|
0.25 kg / 0.55 lbs
~0 Gs
|
| 60 mm |
0.13 kg / 0.29 lbs
320 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.26 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.15 lbs
228 Gs
|
0.01 kg / 0.02 lbs
10 g / 0.1 N
|
0.06 kg / 0.13 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
167 Gs
|
0.01 kg / 0.01 lbs
5 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
125 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
96 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 42x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 42x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.01 km/h
(5.84 m/s)
|
0.54 J | |
| 30 mm |
32.86 km/h
(9.13 m/s)
|
1.31 J | |
| 50 mm |
42.27 km/h
(11.74 m/s)
|
2.17 J | |
| 100 mm |
59.76 km/h
(16.60 m/s)
|
4.34 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 42x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 42x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 614 Mx | 186.1 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 42x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.06 kg | Standard |
| Woda (dno rzeki) |
12.66 kg
(+1.60 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie osłabia udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne produkty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Są nie tylko silne, ale i ładne – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie z dużą mocą.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Wszechstronność kształtowania – można je wykonać w dowolnych formach, idealnych do konkretnego projektu.
- Stanowią kluczowy element w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Uwaga na uszkodzenia mechaniczne – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz konieczne jest użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując uszkodzenia jelit.
- Wyższa cena w porównaniu do ferrytów to ich minus, szczególnie przy dużych ilościach.
Charakterystyka udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- na płycie wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
- której grubość sięga przynajmniej 10 mm
- z powierzchnią idealnie równą
- przy zerowej szczelinie (bez zanieczyszczeń)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Wpływ czynników na nośność magnesu w praktyce
- Dystans – obecność ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość stali – zbyt cienka stal nie przyjmuje całego pola, przez co część mocy marnuje się w powietrzu.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Struktura powierzchni – im równiejsza blacha, tym większa strefa kontaktu i silniejsze trzymanie. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig mierzono używając gładkiej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet 75%. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy z magnesami neodymowymi
Ryzyko pożaru
Uwaga na ogień: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Wrażliwość na ciepło
Monitoruj warunki termiczne. Podgrzanie magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i udźwig.
Trzymaj z dala od elektroniki
Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Urazy ciała
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą wielu ton, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Niebezpieczeństwo dla rozruszników
Pacjenci z kardiowerterem muszą utrzymać bezpieczną odległość od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Reakcje alergiczne
Powszechnie wiadomo, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub wybierz magnesy powlekane tworzywem.
Nośniki danych
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Zachowaj odstęp min. 10 cm.
Chronić przed dziećmi
Sprzedaż wyłącznie dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Świadome użytkowanie
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Łamliwość magnesów
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
