MPL 40x7x3 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020162
GTIN/EAN: 5906301811688
Długość
40 mm [±0,1 mm]
Szerokość
7 mm [±0,1 mm]
Wysokość
3 mm [±0,1 mm]
Waga
6.3 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.14 kg / 70.02 N
Indukcja magnetyczna
284.46 mT / 2845 Gs
Powłoka
[NiCuNi] nikiel
2.79 ZŁ z VAT / szt. + cena za transport
2.27 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 888 99 98 98
ewentualnie skontaktuj się korzystając z
formularz zgłoszeniowy
na stronie kontakt.
Moc a także formę magnesu skontrolujesz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry produktu - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x7x3 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020162 |
| GTIN/EAN | 5906301811688 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 7 mm [±0,1 mm] |
| Wysokość | 3 mm [±0,1 mm] |
| Waga | 6.3 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.14 kg / 70.02 N |
| Indukcja magnetyczna ~ ? | 284.46 mT / 2845 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Przedstawione wartości stanowią bezpośredni efekt kalkulacji inżynierskiej. Wyniki bazują na modelach dla klasy Nd2Fe14B. Realne osiągi mogą odbiegać od wyników symulacji. Prosimy traktować te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 40x7x3 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2843 Gs
284.3 mT
|
7.14 kg / 7140.0 g
70.0 N
|
uwaga |
| 1 mm |
2314 Gs
231.4 mT
|
4.73 kg / 4729.9 g
46.4 N
|
uwaga |
| 2 mm |
1788 Gs
178.8 mT
|
2.83 kg / 2825.3 g
27.7 N
|
uwaga |
| 3 mm |
1365 Gs
136.5 mT
|
1.65 kg / 1645.1 g
16.1 N
|
niskie ryzyko |
| 5 mm |
824 Gs
82.4 mT
|
0.60 kg / 599.2 g
5.9 N
|
niskie ryzyko |
| 10 mm |
317 Gs
31.7 mT
|
0.09 kg / 88.6 g
0.9 N
|
niskie ryzyko |
| 15 mm |
160 Gs
16.0 mT
|
0.02 kg / 22.5 g
0.2 N
|
niskie ryzyko |
| 20 mm |
92 Gs
9.2 mT
|
0.01 kg / 7.5 g
0.1 N
|
niskie ryzyko |
| 30 mm |
38 Gs
3.8 mT
|
0.00 kg / 1.3 g
0.0 N
|
niskie ryzyko |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 40x7x3 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.43 kg / 1428.0 g
14.0 N
|
| 1 mm | Stal (~0.2) |
0.95 kg / 946.0 g
9.3 N
|
| 2 mm | Stal (~0.2) |
0.57 kg / 566.0 g
5.6 N
|
| 3 mm | Stal (~0.2) |
0.33 kg / 330.0 g
3.2 N
|
| 5 mm | Stal (~0.2) |
0.12 kg / 120.0 g
1.2 N
|
| 10 mm | Stal (~0.2) |
0.02 kg / 18.0 g
0.2 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 40x7x3 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.14 kg / 2142.0 g
21.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.43 kg / 1428.0 g
14.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.71 kg / 714.0 g
7.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.57 kg / 3570.0 g
35.0 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 40x7x3 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.71 kg / 714.0 g
7.0 N
|
| 1 mm |
|
1.79 kg / 1785.0 g
17.5 N
|
| 2 mm |
|
3.57 kg / 3570.0 g
35.0 N
|
| 5 mm |
|
7.14 kg / 7140.0 g
70.0 N
|
| 10 mm |
|
7.14 kg / 7140.0 g
70.0 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 40x7x3 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.14 kg / 7140.0 g
70.0 N
|
OK |
| 40 °C | -2.2% |
6.98 kg / 6982.9 g
68.5 N
|
OK |
| 60 °C | -4.4% |
6.83 kg / 6825.8 g
67.0 N
|
|
| 80 °C | -6.6% |
6.67 kg / 6668.8 g
65.4 N
|
|
| 100 °C | -28.8% |
5.08 kg / 5083.7 g
49.9 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - kolizja pól
MPL 40x7x3 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
13.95 kg / 13950 g
136.8 N
4 204 Gs
|
N/A |
| 1 mm |
11.58 kg / 11580 g
113.6 N
5 180 Gs
|
10.42 kg / 10422 g
102.2 N
~0 Gs
|
| 2 mm |
9.24 kg / 9241 g
90.7 N
4 628 Gs
|
8.32 kg / 8317 g
81.6 N
~0 Gs
|
| 3 mm |
7.19 kg / 7194 g
70.6 N
4 083 Gs
|
6.47 kg / 6475 g
63.5 N
~0 Gs
|
| 5 mm |
4.21 kg / 4211 g
41.3 N
3 124 Gs
|
3.79 kg / 3790 g
37.2 N
~0 Gs
|
| 10 mm |
1.17 kg / 1171 g
11.5 N
1 647 Gs
|
1.05 kg / 1054 g
10.3 N
~0 Gs
|
| 20 mm |
0.17 kg / 173 g
1.7 N
633 Gs
|
0.16 kg / 156 g
1.5 N
~0 Gs
|
| 50 mm |
0.01 kg / 6 g
0.1 N
115 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 40x7x3 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 4.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x7x3 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
34.21 km/h
(9.50 m/s)
|
0.28 J | |
| 30 mm |
58.81 km/h
(16.34 m/s)
|
0.84 J | |
| 50 mm |
75.92 km/h
(21.09 m/s)
|
1.40 J | |
| 100 mm |
107.36 km/h
(29.82 m/s)
|
2.80 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x7x3 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 40x7x3 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 6 379 Mx | 63.8 µWb |
| Współczynnik Pc | 0.24 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x7x3 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.14 kg | Standard |
| Woda (dno rzeki) |
8.18 kg
(+1.04 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.24
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady spadek mocy wynosi jedynie ~1% (wg testów).
- Wyróżniają się wyjątkową odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują szerokie zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – od czego zależy?
- przy kontakcie z zwory ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o grubości przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze ok. 20 stopni Celsjusza
Co wpływa na udźwig w praktyce
- Dystans – występowanie jakiejkolwiek warstwy (rdza, brud, szczelina) przerywa obwód magnetyczny, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość elementu – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy przyciąga się identycznie. Wysoka zawartość węgla pogarszają interakcję z magnesem.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura tworzą poduszki powietrzne, osłabiając magnes.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą obniża udźwig.
BHP przy magnesach
Ostrożność wymagana
Przed przystąpieniem do pracy, przeczytaj instrukcję. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Bądź przewidujący.
Wpływ na smartfony
Uwaga: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Nie zbliżaj do komputera
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Ryzyko zmiażdżenia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie medyczne: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Zagrożenie wybuchem pyłu
Proszek generowany podczas cięcia magnesów jest samozapalny. Zakaz wiercenia w magnesach w warunkach domowych.
Nadwrażliwość na metale
Informacja alergiczna: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Kruchy spiek
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się rozpaść na ostre, niebezpieczne kawałki.
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego domenę magnetyczną i siłę przyciągania.
Tylko dla dorosłych
Zawsze zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są dramatyczne.
