MPL 40x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020160
GTIN/EAN: 5906301811664
Długość
40 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
30 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.67 kg / 104.63 N
Indukcja magnetyczna
205.27 mT / 2053 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
alternatywnie napisz korzystając z
formularz zgłoszeniowy
na naszej stronie.
Masę a także formę magnesu neodymowego zweryfikujesz dzięki naszemu
modułowym kalkulatorze.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Karta produktu - MPL 40x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020160 |
| GTIN/EAN | 5906301811664 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 30 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.67 kg / 104.63 N |
| Indukcja magnetyczna ~ ? | 205.27 mT / 2053 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu - dane
Przedstawione wartości stanowią wynik symulacji matematycznej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2052 Gs
205.2 mT
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
niebezpieczny! |
| 1 mm |
1956 Gs
195.6 mT
|
9.69 kg / 21.37 lbs
9693.2 g / 95.1 N
|
średnie ryzyko |
| 2 mm |
1839 Gs
183.9 mT
|
8.57 kg / 18.89 lbs
8570.5 g / 84.1 N
|
średnie ryzyko |
| 3 mm |
1711 Gs
171.1 mT
|
7.41 kg / 16.34 lbs
7413.1 g / 72.7 N
|
średnie ryzyko |
| 5 mm |
1444 Gs
144.4 mT
|
5.28 kg / 11.65 lbs
5282.9 g / 51.8 N
|
średnie ryzyko |
| 10 mm |
888 Gs
88.8 mT
|
2.00 kg / 4.40 lbs
1996.5 g / 19.6 N
|
słaby uchwyt |
| 15 mm |
545 Gs
54.5 mT
|
0.75 kg / 1.66 lbs
752.0 g / 7.4 N
|
słaby uchwyt |
| 20 mm |
346 Gs
34.6 mT
|
0.30 kg / 0.67 lbs
302.9 g / 3.0 N
|
słaby uchwyt |
| 30 mm |
156 Gs
15.6 mT
|
0.06 kg / 0.14 lbs
61.9 g / 0.6 N
|
słaby uchwyt |
| 50 mm |
46 Gs
4.6 mT
|
0.01 kg / 0.01 lbs
5.4 g / 0.1 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| 1 mm | Stal (~0.2) |
1.94 kg / 4.27 lbs
1938.0 g / 19.0 N
|
| 2 mm | Stal (~0.2) |
1.71 kg / 3.78 lbs
1714.0 g / 16.8 N
|
| 3 mm | Stal (~0.2) |
1.48 kg / 3.27 lbs
1482.0 g / 14.5 N
|
| 5 mm | Stal (~0.2) |
1.06 kg / 2.33 lbs
1056.0 g / 10.4 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 15 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.20 kg / 7.06 lbs
3201.0 g / 31.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.07 kg / 2.35 lbs
1067.0 g / 10.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.34 kg / 11.76 lbs
5335.0 g / 52.3 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.53 kg / 1.18 lbs
533.5 g / 5.2 N
|
| 1 mm |
|
1.33 kg / 2.94 lbs
1333.8 g / 13.1 N
|
| 2 mm |
|
2.67 kg / 5.88 lbs
2667.5 g / 26.2 N
|
| 3 mm |
|
4.00 kg / 8.82 lbs
4001.2 g / 39.3 N
|
| 5 mm |
|
6.67 kg / 14.70 lbs
6668.8 g / 65.4 N
|
| 10 mm |
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
| 11 mm |
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
| 12 mm |
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
OK |
| 40 °C | -2.2% |
10.44 kg / 23.01 lbs
10435.3 g / 102.4 N
|
OK |
| 60 °C | -4.4% |
10.20 kg / 22.49 lbs
10200.5 g / 100.1 N
|
|
| 80 °C | -6.6% |
9.97 kg / 21.97 lbs
9965.8 g / 97.8 N
|
|
| 100 °C | -28.8% |
7.60 kg / 16.75 lbs
7597.0 g / 74.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.78 kg / 45.80 lbs
3 495 Gs
|
3.12 kg / 6.87 lbs
3116 g / 30.6 N
|
N/A |
| 1 mm |
19.88 kg / 43.83 lbs
4 015 Gs
|
2.98 kg / 6.57 lbs
2982 g / 29.3 N
|
17.89 kg / 39.44 lbs
~0 Gs
|
| 2 mm |
18.87 kg / 41.61 lbs
3 912 Gs
|
2.83 kg / 6.24 lbs
2831 g / 27.8 N
|
16.99 kg / 37.45 lbs
~0 Gs
|
| 3 mm |
17.80 kg / 39.24 lbs
3 800 Gs
|
2.67 kg / 5.89 lbs
2670 g / 26.2 N
|
16.02 kg / 35.32 lbs
~0 Gs
|
| 5 mm |
15.56 kg / 34.30 lbs
3 552 Gs
|
2.33 kg / 5.14 lbs
2334 g / 22.9 N
|
14.00 kg / 30.87 lbs
~0 Gs
|
| 10 mm |
10.29 kg / 22.68 lbs
2 888 Gs
|
1.54 kg / 3.40 lbs
1543 g / 15.1 N
|
9.26 kg / 20.41 lbs
~0 Gs
|
| 20 mm |
3.89 kg / 8.57 lbs
1 776 Gs
|
0.58 kg / 1.29 lbs
583 g / 5.7 N
|
3.50 kg / 7.71 lbs
~0 Gs
|
| 50 mm |
0.26 kg / 0.57 lbs
456 Gs
|
0.04 kg / 0.08 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 60 mm |
0.12 kg / 0.27 lbs
313 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 70 mm |
0.06 kg / 0.13 lbs
221 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.07 lbs
162 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
121 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
93 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.13 km/h
(5.87 m/s)
|
0.52 J | |
| 30 mm |
33.06 km/h
(9.18 m/s)
|
1.27 J | |
| 50 mm |
42.54 km/h
(11.82 m/s)
|
2.09 J | |
| 100 mm |
60.15 km/h
(16.71 m/s)
|
4.19 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 042 Mx | 180.4 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.67 kg | Standard |
| Woda (dno rzeki) |
12.22 kg
(+1.55 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Pamiętaj: Na pionowej ścianie magnes zachowa jedynie ułamek siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie redukuje siłę trzymania.
3. Stabilność termiczna
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady i zalety magnesów neodymowych Nd2Fe14B.
Plusy
- Długowieczność to ich atut – nawet po dekady spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Są nie tylko silne, ale i ładne – poprzez niklowanie lub złocenie ich powierzchnia jest refleksyjna i prezentuje się elegancko.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Można je precyzyjnie obrabiać do specyficznych wymiarów, co ułatwia ich adaptację w skomplikowanych urządzeniach.
- Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Parametry udźwigu
Maksymalna moc trzymania magnesu – co się na to składa?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- przy zerowej szczelinie (bez farby)
- podczas odrywania w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Determinanty praktycznego udźwigu magnesu
- Dystans – występowanie jakiejkolwiek warstwy (farba, brud, szczelina) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.
Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Nie wierć w magnesach
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Siła neodymu
Stosuj magnesy z rozwagą. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i respektuj ich siły.
Kruchy spiek
Choć wyglądają jak stal, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Alergia na nikiel
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.
Trwała utrata siły
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Proces ten jest nieodwracalny.
Nie dawać dzieciom
Te produkty magnetyczne nie służą do zabawy. Przypadkowe zjedzenie kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Urazy ciała
Uważaj na palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Zagrożenie dla elektroniki
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Implanty medyczne
Pacjenci z kardiowerterem muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać pracę urządzenia ratującego życie.
Interferencja magnetyczna
Ważna informacja: magnesy neodymowe generują pole, które dezorientują elektronikę precyzyjną. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
