MPL 40x20x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020160
GTIN/EAN: 5906301811664
Długość
40 mm [±0,1 mm]
Szerokość
20 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
30 g
Kierunek magnesowania
↑ osiowy
Udźwig
10.67 kg / 104.63 N
Indukcja magnetyczna
205.27 mT / 2053 Gs
Powłoka
[NiCuNi] nikiel
12.24 ZŁ z VAT / szt. + cena za transport
9.95 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
lub daj znać korzystając z
formularz
na stronie kontakt.
Parametry i wygląd magnesów wyliczysz dzięki naszemu
narzędziu online do obliczeń.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja - MPL 40x20x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x20x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020160 |
| GTIN/EAN | 5906301811664 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 20 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 30 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 10.67 kg / 104.63 N |
| Indukcja magnetyczna ~ ? | 205.27 mT / 2053 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza techniczna magnesu neodymowego - raport
Przedstawione informacje stanowią bezpośredni efekt symulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 40x20x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2052 Gs
205.2 mT
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
krytyczny poziom |
| 1 mm |
1956 Gs
195.6 mT
|
9.69 kg / 21.37 lbs
9693.2 g / 95.1 N
|
uwaga |
| 2 mm |
1839 Gs
183.9 mT
|
8.57 kg / 18.89 lbs
8570.5 g / 84.1 N
|
uwaga |
| 3 mm |
1711 Gs
171.1 mT
|
7.41 kg / 16.34 lbs
7413.1 g / 72.7 N
|
uwaga |
| 5 mm |
1444 Gs
144.4 mT
|
5.28 kg / 11.65 lbs
5282.9 g / 51.8 N
|
uwaga |
| 10 mm |
888 Gs
88.8 mT
|
2.00 kg / 4.40 lbs
1996.5 g / 19.6 N
|
bezpieczny |
| 15 mm |
545 Gs
54.5 mT
|
0.75 kg / 1.66 lbs
752.0 g / 7.4 N
|
bezpieczny |
| 20 mm |
346 Gs
34.6 mT
|
0.30 kg / 0.67 lbs
302.9 g / 3.0 N
|
bezpieczny |
| 30 mm |
156 Gs
15.6 mT
|
0.06 kg / 0.14 lbs
61.9 g / 0.6 N
|
bezpieczny |
| 50 mm |
46 Gs
4.6 mT
|
0.01 kg / 0.01 lbs
5.4 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 40x20x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| 1 mm | Stal (~0.2) |
1.94 kg / 4.27 lbs
1938.0 g / 19.0 N
|
| 2 mm | Stal (~0.2) |
1.71 kg / 3.78 lbs
1714.0 g / 16.8 N
|
| 3 mm | Stal (~0.2) |
1.48 kg / 3.27 lbs
1482.0 g / 14.5 N
|
| 5 mm | Stal (~0.2) |
1.06 kg / 2.33 lbs
1056.0 g / 10.4 N
|
| 10 mm | Stal (~0.2) |
0.40 kg / 0.88 lbs
400.0 g / 3.9 N
|
| 15 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
60.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 40x20x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.20 kg / 7.06 lbs
3201.0 g / 31.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.13 kg / 4.70 lbs
2134.0 g / 20.9 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.07 kg / 2.35 lbs
1067.0 g / 10.5 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.34 kg / 11.76 lbs
5335.0 g / 52.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 40x20x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.53 kg / 1.18 lbs
533.5 g / 5.2 N
|
| 1 mm |
|
1.33 kg / 2.94 lbs
1333.8 g / 13.1 N
|
| 2 mm |
|
2.67 kg / 5.88 lbs
2667.5 g / 26.2 N
|
| 3 mm |
|
4.00 kg / 8.82 lbs
4001.2 g / 39.3 N
|
| 5 mm |
|
6.67 kg / 14.70 lbs
6668.8 g / 65.4 N
|
| 10 mm |
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
| 11 mm |
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
| 12 mm |
|
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 40x20x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.67 kg / 23.52 lbs
10670.0 g / 104.7 N
|
OK |
| 40 °C | -2.2% |
10.44 kg / 23.01 lbs
10435.3 g / 102.4 N
|
OK |
| 60 °C | -4.4% |
10.20 kg / 22.49 lbs
10200.5 g / 100.1 N
|
|
| 80 °C | -6.6% |
9.97 kg / 21.97 lbs
9965.8 g / 97.8 N
|
|
| 100 °C | -28.8% |
7.60 kg / 16.75 lbs
7597.0 g / 74.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 40x20x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
20.78 kg / 45.80 lbs
3 495 Gs
|
3.12 kg / 6.87 lbs
3116 g / 30.6 N
|
N/A |
| 1 mm |
19.88 kg / 43.83 lbs
4 015 Gs
|
2.98 kg / 6.57 lbs
2982 g / 29.3 N
|
17.89 kg / 39.44 lbs
~0 Gs
|
| 2 mm |
18.87 kg / 41.61 lbs
3 912 Gs
|
2.83 kg / 6.24 lbs
2831 g / 27.8 N
|
16.99 kg / 37.45 lbs
~0 Gs
|
| 3 mm |
17.80 kg / 39.24 lbs
3 800 Gs
|
2.67 kg / 5.89 lbs
2670 g / 26.2 N
|
16.02 kg / 35.32 lbs
~0 Gs
|
| 5 mm |
15.56 kg / 34.30 lbs
3 552 Gs
|
2.33 kg / 5.14 lbs
2334 g / 22.9 N
|
14.00 kg / 30.87 lbs
~0 Gs
|
| 10 mm |
10.29 kg / 22.68 lbs
2 888 Gs
|
1.54 kg / 3.40 lbs
1543 g / 15.1 N
|
9.26 kg / 20.41 lbs
~0 Gs
|
| 20 mm |
3.89 kg / 8.57 lbs
1 776 Gs
|
0.58 kg / 1.29 lbs
583 g / 5.7 N
|
3.50 kg / 7.71 lbs
~0 Gs
|
| 50 mm |
0.26 kg / 0.57 lbs
456 Gs
|
0.04 kg / 0.08 lbs
39 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 60 mm |
0.12 kg / 0.27 lbs
313 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 70 mm |
0.06 kg / 0.13 lbs
221 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 80 mm |
0.03 kg / 0.07 lbs
162 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.04 lbs
121 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.02 lbs
93 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 40x20x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 11.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 9.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 7.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 5.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x20x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
21.13 km/h
(5.87 m/s)
|
0.52 J | |
| 30 mm |
33.06 km/h
(9.18 m/s)
|
1.27 J | |
| 50 mm |
42.54 km/h
(11.82 m/s)
|
2.09 J | |
| 100 mm |
60.15 km/h
(16.71 m/s)
|
4.19 J |
Tabela 9: Odporność na korozję
MPL 40x20x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x20x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 18 042 Mx | 180.4 µWb |
| Współczynnik Pc | 0.23 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 40x20x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 10.67 kg | Standard |
| Woda (dno rzeki) |
12.22 kg
(+1.55 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Uwaga: Na pionowej ścianie magnes zachowa tylko ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie redukuje udźwig magnesu.
3. Stabilność termiczna
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.23
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady i zalety magnesów z neodymu Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie słabną o symboliczny 1%.
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na pola rozmagnesowujące.
- Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Minusy
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy upadku na twarde podłoże.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Ze względu na twardość, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Charakterystyka udźwigu
Najlepsza nośność magnesu w idealnych parametrach – od czego zależy?
- na płycie wykonanej ze stali miękkiej, efektywnie zamykającej strumień magnetyczny
- posiadającej masywność co najmniej 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- w warunkach braku dystansu (metal do metalu)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między magnesem a stalą – każdy milimetr odległości (spowodowany np. okleiną lub nierównością) drastycznie redukuje siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Sposób obciążenia – parametr katalogowy dotyczy ciągnięcia w pionie. Przy ześlizgiwaniu, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przechodzi przez materiał, zamiast zamienić się w udźwig.
- Materiał blachy – stal miękka przyciąga najlepiej. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa nasycenie pola. Nierówny metal osłabiają chwyt.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Udźwig określano z wykorzystaniem gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą redukuje udźwig.
Środki ostrożności podczas pracy przy magnesach z neodymem
Wpływ na smartfony
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może trwale uszkodzić sensory w Twoim telefonie.
Wrażliwość na ciepło
Typowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Nie wierć w magnesach
Szlifowanie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Urządzenia elektroniczne
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (implanty, protezy słuchu, zegarki mechaniczne).
Chronić przed dziećmi
Silne magnesy nie służą do zabawy. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stanowi stan krytyczny i wymaga pilnej interwencji chirurgicznej.
Ochrona oczu
Mimo metalicznego wyglądu, neodym jest delikatny i nie znosi udarów. Unikaj uderzeń, gdyż magnes może się rozpaść na drobiny.
Siła neodymu
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może połamać magnes lub zranić dłoń. Myśl o krok do przodu.
Wpływ na zdrowie
Dla posiadaczy implantów: Silne pole magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Nadwrażliwość na metale
Część populacji posiada alergię kontaktową na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może wywołać zaczerwienienie skóry. Rekomendujemy stosowanie rękawiczek ochronnych.
Urazy ciała
Ryzyko obrażeń: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet złamania kości. Używaj grubych rękawic.
