MPL 40x18x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020156
GTIN/EAN: 5906301811626
Długość
40 mm [±0,1 mm]
Szerokość
18 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
54 g
Kierunek magnesowania
↑ osiowy
Udźwig
23.81 kg / 233.58 N
Indukcja magnetyczna
366.66 mT / 3667 Gs
Powłoka
[NiCuNi] nikiel
30.75 ZŁ z VAT / szt. + cena za transport
25.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 888 99 98 98
lub daj znać poprzez
formularz zapytania
na stronie kontaktowej.
Udźwig a także wygląd magnesu testujesz w naszym
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane - MPL 40x18x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x18x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020156 |
| GTIN/EAN | 5906301811626 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 18 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 54 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 23.81 kg / 233.58 N |
| Indukcja magnetyczna ~ ? | 366.66 mT / 3667 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - parametry techniczne
Niniejsze dane są bezpośredni efekt analizy matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - wykres oddziaływania
MPL 40x18x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3666 Gs
366.6 mT
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
miażdżący |
| 1 mm |
3399 Gs
339.9 mT
|
20.48 kg / 45.14 lbs
20476.1 g / 200.9 N
|
miażdżący |
| 2 mm |
3120 Gs
312.0 mT
|
17.25 kg / 38.02 lbs
17245.9 g / 169.2 N
|
miażdżący |
| 3 mm |
2841 Gs
284.1 mT
|
14.30 kg / 31.54 lbs
14304.1 g / 140.3 N
|
miażdżący |
| 5 mm |
2321 Gs
232.1 mT
|
9.55 kg / 21.05 lbs
9547.8 g / 93.7 N
|
uwaga |
| 10 mm |
1370 Gs
137.0 mT
|
3.32 kg / 7.33 lbs
3324.4 g / 32.6 N
|
uwaga |
| 15 mm |
833 Gs
83.3 mT
|
1.23 kg / 2.71 lbs
1229.0 g / 12.1 N
|
bezpieczny |
| 20 mm |
530 Gs
53.0 mT
|
0.50 kg / 1.10 lbs
498.1 g / 4.9 N
|
bezpieczny |
| 30 mm |
244 Gs
24.4 mT
|
0.11 kg / 0.23 lbs
105.3 g / 1.0 N
|
bezpieczny |
| 50 mm |
75 Gs
7.5 mT
|
0.01 kg / 0.02 lbs
9.9 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 40x18x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| 1 mm | Stal (~0.2) |
4.10 kg / 9.03 lbs
4096.0 g / 40.2 N
|
| 2 mm | Stal (~0.2) |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 3 mm | Stal (~0.2) |
2.86 kg / 6.31 lbs
2860.0 g / 28.1 N
|
| 5 mm | Stal (~0.2) |
1.91 kg / 4.21 lbs
1910.0 g / 18.7 N
|
| 10 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
664.0 g / 6.5 N
|
| 15 mm | Stal (~0.2) |
0.25 kg / 0.54 lbs
246.0 g / 2.4 N
|
| 20 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 40x18x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
7.14 kg / 15.75 lbs
7143.0 g / 70.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.76 kg / 10.50 lbs
4762.0 g / 46.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
2.38 kg / 5.25 lbs
2381.0 g / 23.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
11.91 kg / 26.25 lbs
11905.0 g / 116.8 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x18x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.19 kg / 2.62 lbs
1190.5 g / 11.7 N
|
| 1 mm |
|
2.98 kg / 6.56 lbs
2976.3 g / 29.2 N
|
| 2 mm |
|
5.95 kg / 13.12 lbs
5952.5 g / 58.4 N
|
| 3 mm |
|
8.93 kg / 19.68 lbs
8928.7 g / 87.6 N
|
| 5 mm |
|
14.88 kg / 32.81 lbs
14881.3 g / 146.0 N
|
| 10 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 11 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
| 12 mm |
|
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - limit termiczny
MPL 40x18x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
23.81 kg / 52.49 lbs
23810.0 g / 233.6 N
|
OK |
| 40 °C | -2.2% |
23.29 kg / 51.34 lbs
23286.2 g / 228.4 N
|
OK |
| 60 °C | -4.4% |
22.76 kg / 50.18 lbs
22762.4 g / 223.3 N
|
|
| 80 °C | -6.6% |
22.24 kg / 49.03 lbs
22238.5 g / 218.2 N
|
|
| 100 °C | -28.8% |
16.95 kg / 37.37 lbs
16952.7 g / 166.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 40x18x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
59.64 kg / 131.49 lbs
5 034 Gs
|
8.95 kg / 19.72 lbs
8947 g / 87.8 N
|
N/A |
| 1 mm |
55.50 kg / 122.35 lbs
7 072 Gs
|
8.32 kg / 18.35 lbs
8325 g / 81.7 N
|
49.95 kg / 110.12 lbs
~0 Gs
|
| 2 mm |
51.29 kg / 113.08 lbs
6 799 Gs
|
7.69 kg / 16.96 lbs
7694 g / 75.5 N
|
46.16 kg / 101.77 lbs
~0 Gs
|
| 3 mm |
47.18 kg / 104.01 lbs
6 520 Gs
|
7.08 kg / 15.60 lbs
7076 g / 69.4 N
|
42.46 kg / 93.61 lbs
~0 Gs
|
| 5 mm |
39.41 kg / 86.88 lbs
5 959 Gs
|
5.91 kg / 13.03 lbs
5912 g / 58.0 N
|
35.47 kg / 78.20 lbs
~0 Gs
|
| 10 mm |
23.92 kg / 52.73 lbs
4 643 Gs
|
3.59 kg / 7.91 lbs
3588 g / 35.2 N
|
21.53 kg / 47.46 lbs
~0 Gs
|
| 20 mm |
8.33 kg / 18.36 lbs
2 739 Gs
|
1.25 kg / 2.75 lbs
1249 g / 12.3 N
|
7.49 kg / 16.52 lbs
~0 Gs
|
| 50 mm |
0.55 kg / 1.22 lbs
705 Gs
|
0.08 kg / 0.18 lbs
83 g / 0.8 N
|
0.50 kg / 1.09 lbs
~0 Gs
|
| 60 mm |
0.26 kg / 0.58 lbs
487 Gs
|
0.04 kg / 0.09 lbs
40 g / 0.4 N
|
0.24 kg / 0.52 lbs
~0 Gs
|
| 70 mm |
0.13 kg / 0.30 lbs
348 Gs
|
0.02 kg / 0.04 lbs
20 g / 0.2 N
|
0.12 kg / 0.27 lbs
~0 Gs
|
| 80 mm |
0.07 kg / 0.16 lbs
256 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.07 kg / 0.14 lbs
~0 Gs
|
| 90 mm |
0.04 kg / 0.09 lbs
194 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.05 lbs
149 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - ostrzeżenia
MPL 40x18x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 14.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 11.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 40x18x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
1.10 J | |
| 30 mm |
36.78 km/h
(10.22 m/s)
|
2.82 J | |
| 50 mm |
47.37 km/h
(13.16 m/s)
|
4.67 J | |
| 100 mm |
66.97 km/h
(18.60 m/s)
|
9.34 J |
Tabela 9: Odporność na korozję
MPL 40x18x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x18x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 26 060 Mx | 260.6 µWb |
| Współczynnik Pc | 0.43 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 40x18x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 23.81 kg | Standard |
| Woda (dno rzeki) |
27.26 kg
(+3.45 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.43
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Długowieczność to ich atut – nawet po 10 lat spadek siły magnetycznej wynosi tylko ~1% (teoretycznie).
- Trudno je rozmagnesować, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, złoto, srebro) zyskują estetyczny, błyszczący wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Są niezbędne w innowacjach, zasilając silniki, urządzenia medyczne czy komputery.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Gwałtowne złączenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- z wykorzystaniem płyty ze stali o wysokiej przenikalności, która służy jako zwora magnetyczna
- o przekroju przynajmniej 10 mm
- o szlifowanej powierzchni styku
- w warunkach bezszczelinowych (metal do metalu)
- przy pionowym kierunku działania siły (kąt 90 stopni)
- przy temperaturze otoczenia pokojowej
Co wpływa na udźwig w praktyce
- Szczelina między magnesem a stalą – każdy milimetr dystansu (spowodowany np. lakierem lub nierównością) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig mierzono stosując wypolerowanej blachy o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet 75%. Co więcej, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy z magnesami neodymowymi
Zakaz obróbki
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ryzyko połknięcia
Te produkty magnetyczne nie służą do zabawy. Inhalacja kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Wpływ na zdrowie
Osoby z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać pracę implantu.
Uczulenie na powłokę
Ostrzeżenie dla alergików: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i użyć środków ochronnych.
Magnesy są kruche
Spieki NdFeB to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Zderzenie dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe działają z dużej odległości i zwierają z impetem, często szybciej niż jesteś w stanie przewidzieć.
Zakłócenia GPS i telefonów
Pamiętaj: magnesy neodymowe wytwarzają pole, które dezorientują systemy nawigacji. Utrzymuj odpowiednią odległość od komórki, tabletu i nawigacji.
Uszkodzenia ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać rany, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Zagrożenie dla elektroniki
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić nośniki danych oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, czasomierze).
