MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020154
GTIN/EAN: 5906301811602
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.35 kg / 111.37 N
Indukcja magnetyczna
249.11 mT / 2491 Gs
Powłoka
[NiCuNi] nikiel
15.07 ZŁ z VAT / szt. + cena za transport
12.25 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 888 99 98 98
lub pisz za pomocą
formularz
na stronie kontaktowej.
Moc oraz formę magnesu zobaczysz u nas w
modułowym kalkulatorze.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegóły techniczne - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x15x5x2[7/3.5] / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020154 |
| GTIN/EAN | 5906301811602 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.35 kg / 111.37 N |
| Indukcja magnetyczna ~ ? | 249.11 mT / 2491 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu neodymowego - parametry techniczne
Poniższe informacje są rezultat kalkulacji inżynierskiej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Traktuj te wyliczenia jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
miażdżący |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 21.45 lbs
9731.3 g / 95.5 N
|
mocny |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 17.70 lbs
8028.8 g / 78.8 N
|
mocny |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 14.21 lbs
6445.4 g / 63.2 N
|
mocny |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 8.74 lbs
3965.1 g / 38.9 N
|
mocny |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 2.53 lbs
1147.1 g / 11.3 N
|
niskie ryzyko |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 0.83 lbs
376.9 g / 3.7 N
|
niskie ryzyko |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 0.31 lbs
141.4 g / 1.4 N
|
niskie ryzyko |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 0.06 lbs
27.0 g / 0.3 N
|
niskie ryzyko |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.01 lbs
2.3 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 40x15x5x2[7/3.5] / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 4.29 lbs
1946.0 g / 19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 3.54 lbs
1606.0 g / 15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 2.84 lbs
1290.0 g / 12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 1.75 lbs
794.0 g / 7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 0.51 lbs
230.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 0.17 lbs
76.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.06 lbs
28.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 40x15x5x2[7/3.5] / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 7.51 lbs
3405.0 g / 33.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 5.00 lbs
2270.0 g / 22.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 2.50 lbs
1135.0 g / 11.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 12.51 lbs
5675.0 g / 55.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x15x5x2[7/3.5] / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 1.25 lbs
567.5 g / 5.6 N
|
| 1 mm |
|
1.42 kg / 3.13 lbs
1418.8 g / 13.9 N
|
| 2 mm |
|
2.84 kg / 6.26 lbs
2837.5 g / 27.8 N
|
| 3 mm |
|
4.26 kg / 9.38 lbs
4256.3 g / 41.8 N
|
| 5 mm |
|
7.09 kg / 15.64 lbs
7093.8 g / 69.6 N
|
| 10 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 11 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
| 12 mm |
|
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 40x15x5x2[7/3.5] / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 25.02 lbs
11350.0 g / 111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 24.47 lbs
11100.3 g / 108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 23.92 lbs
10850.6 g / 106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 23.37 lbs
10600.9 g / 104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 17.82 lbs
8081.2 g / 79.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 40x15x5x2[7/3.5] / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.94 kg / 50.58 lbs
3 961 Gs
|
3.44 kg / 7.59 lbs
3441 g / 33.8 N
|
N/A |
| 1 mm |
21.37 kg / 47.11 lbs
4 807 Gs
|
3.21 kg / 7.07 lbs
3205 g / 31.4 N
|
19.23 kg / 42.40 lbs
~0 Gs
|
| 2 mm |
19.67 kg / 43.37 lbs
4 612 Gs
|
2.95 kg / 6.50 lbs
2951 g / 28.9 N
|
17.70 kg / 39.03 lbs
~0 Gs
|
| 3 mm |
17.94 kg / 39.55 lbs
4 404 Gs
|
2.69 kg / 5.93 lbs
2691 g / 26.4 N
|
16.15 kg / 35.59 lbs
~0 Gs
|
| 5 mm |
14.58 kg / 32.15 lbs
3 971 Gs
|
2.19 kg / 4.82 lbs
2187 g / 21.5 N
|
13.12 kg / 28.93 lbs
~0 Gs
|
| 10 mm |
8.01 kg / 17.67 lbs
2 944 Gs
|
1.20 kg / 2.65 lbs
1202 g / 11.8 N
|
7.21 kg / 15.90 lbs
~0 Gs
|
| 20 mm |
2.32 kg / 5.11 lbs
1 583 Gs
|
0.35 kg / 0.77 lbs
348 g / 3.4 N
|
2.09 kg / 4.60 lbs
~0 Gs
|
| 50 mm |
0.12 kg / 0.26 lbs
359 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.24 lbs
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 lbs
243 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
171 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
124 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
92 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
70 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - środki ostrożności
MPL 40x15x5x2[7/3.5] / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 40x15x5x2[7/3.5] / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
Tabela 9: Odporność na korozję
MPL 40x15x5x2[7/3.5] / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 40x15x5x2[7/3.5] / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 40x15x5x2[7/3.5] / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.35 kg | Standard |
| Woda (dno rzeki) |
13.00 kg
(+1.65 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Ważne: Na pionowej ścianie magnes utrzyma zaledwie ~20-30% siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie osłabia siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne propozycje
Zalety oraz wady magnesów z neodymu Nd2Fe14B.
Mocne strony
- Są niezwykle trwałe – przez okres blisko 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Trudno je rozmagnesować, gdyż wykazują wysoką odporność na zewnętrzne czynniki.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i wygląda estetycznie.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia silne chwytanie z dużą mocą.
- Odpowiedni skład sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Opcja produkcji złożonych kształtów sprawia, że są doskonałe do nietypowych zastosowań.
- Znajdują powszechne zastosowanie w przemyśle high-tech – od dysków twardych i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują silne pole.
Minusy
- Ze względu na brak elastyczności, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż w ogrodzie, najlepszą opcją są magnesy w gumowej otulinie.
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy produkcji masowej może być barierą.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- charakteryzującej się brakiem chropowatości
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły działającej pod kątem prostym (w osi magnesu)
- w warunkach ok. 20°C
Praktyczne aspekty udźwigu – czynniki
- Szczelina między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub brudem) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy zsuwaniu w dół, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Masywność podłoża – zbyt cienka blacha nie zamyka strumienia, przez co część mocy ucieka w powietrzu.
- Materiał blachy – stal miękka przyciąga najlepiej. Większa zawartość węgla zmniejszają właściwości magnetyczne i siłę trzymania.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal osłabiają chwyt.
- Temperatura pracy – spieki NdFeB posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, z kolei przy działaniu siły na zsuwanie nośność jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą obniża siłę trzymania.
Zasady BHP dla użytkowników magnesów
Temperatura pracy
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.
Trzymaj z dala od elektroniki
Moduły GPS i smartfony są wyjątkowo podatne na wpływ magnesów. Bezpośredni kontakt z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Tylko dla dorosłych
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od niepowołanych osób.
Zagrożenie dla elektroniki
Bardzo silne pole magnetyczne może zniszczyć zapis na kartach płatniczych, nośnikach HDD i innych nośnikach magnetycznych. Trzymaj dystans min. 10 cm.
Podatność na pękanie
Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając kawałki metalu w powietrze. Ochrona wzroku wymagana.
Ryzyko uczulenia
Uwaga na nikiel: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Obróbka mechaniczna
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Implanty kardiologiczne
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na urządzenia medyczne. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i łączą się z impetem, często gwałtowniej niż zdążysz zareagować.
Urazy ciała
Niebezpieczeństwo urazu: Siła przyciągania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet otwarte złamania. Używaj grubych rękawic.
