MPL 40x15x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020153
GTIN/EAN: 5906301811596
Długość
40 mm [±0,1 mm]
Szerokość
15 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
22.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
11.35 kg / 111.37 N
Indukcja magnetyczna
249.11 mT / 2491 Gs
Powłoka
[NiCuNi] nikiel
7.63 ZŁ z VAT / szt. + cena za transport
6.20 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Chcesz skonsultować wybór?
Dzwoń do nas
+48 888 99 98 98
albo napisz przez
formularz zgłoszeniowy
na naszej stronie.
Właściwości a także formę elementów magnetycznych sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
MPL 40x15x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 40x15x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020153 |
| GTIN/EAN | 5906301811596 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 15 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 22.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 11.35 kg / 111.37 N |
| Indukcja magnetyczna ~ ? | 249.11 mT / 2491 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu - dane
Przedstawione dane są rezultat kalkulacji matematycznej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
MPL 40x15x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2490 Gs
249.0 mT
|
11.35 kg / 11350.0 g
111.3 N
|
miażdżący |
| 1 mm |
2306 Gs
230.6 mT
|
9.73 kg / 9731.3 g
95.5 N
|
średnie ryzyko |
| 2 mm |
2095 Gs
209.5 mT
|
8.03 kg / 8028.8 g
78.8 N
|
średnie ryzyko |
| 3 mm |
1877 Gs
187.7 mT
|
6.45 kg / 6445.4 g
63.2 N
|
średnie ryzyko |
| 5 mm |
1472 Gs
147.2 mT
|
3.97 kg / 3965.1 g
38.9 N
|
średnie ryzyko |
| 10 mm |
792 Gs
79.2 mT
|
1.15 kg / 1147.1 g
11.3 N
|
bezpieczny |
| 15 mm |
454 Gs
45.4 mT
|
0.38 kg / 376.9 g
3.7 N
|
bezpieczny |
| 20 mm |
278 Gs
27.8 mT
|
0.14 kg / 141.4 g
1.4 N
|
bezpieczny |
| 30 mm |
122 Gs
12.2 mT
|
0.03 kg / 27.0 g
0.3 N
|
bezpieczny |
| 50 mm |
35 Gs
3.5 mT
|
0.00 kg / 2.3 g
0.0 N
|
bezpieczny |
MPL 40x15x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.27 kg / 2270.0 g
22.3 N
|
| 1 mm | Stal (~0.2) |
1.95 kg / 1946.0 g
19.1 N
|
| 2 mm | Stal (~0.2) |
1.61 kg / 1606.0 g
15.8 N
|
| 3 mm | Stal (~0.2) |
1.29 kg / 1290.0 g
12.7 N
|
| 5 mm | Stal (~0.2) |
0.79 kg / 794.0 g
7.8 N
|
| 10 mm | Stal (~0.2) |
0.23 kg / 230.0 g
2.3 N
|
| 15 mm | Stal (~0.2) |
0.08 kg / 76.0 g
0.7 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 28.0 g
0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 6.0 g
0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
MPL 40x15x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
3.41 kg / 3405.0 g
33.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.27 kg / 2270.0 g
22.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.14 kg / 1135.0 g
11.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
5.68 kg / 5675.0 g
55.7 N
|
MPL 40x15x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.57 kg / 567.5 g
5.6 N
|
| 1 mm |
|
1.42 kg / 1418.8 g
13.9 N
|
| 2 mm |
|
2.84 kg / 2837.5 g
27.8 N
|
| 5 mm |
|
7.09 kg / 7093.8 g
69.6 N
|
| 10 mm |
|
11.35 kg / 11350.0 g
111.3 N
|
MPL 40x15x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
11.35 kg / 11350.0 g
111.3 N
|
OK |
| 40 °C | -2.2% |
11.10 kg / 11100.3 g
108.9 N
|
OK |
| 60 °C | -4.4% |
10.85 kg / 10850.6 g
106.4 N
|
|
| 80 °C | -6.6% |
10.60 kg / 10600.9 g
104.0 N
|
|
| 100 °C | -28.8% |
8.08 kg / 8081.2 g
79.3 N
|
MPL 40x15x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
22.94 kg / 22943 g
225.1 N
3 961 Gs
|
N/A |
| 1 mm |
21.37 kg / 21370 g
209.6 N
4 807 Gs
|
19.23 kg / 19233 g
188.7 N
~0 Gs
|
| 2 mm |
19.67 kg / 19671 g
193.0 N
4 612 Gs
|
17.70 kg / 17704 g
173.7 N
~0 Gs
|
| 3 mm |
17.94 kg / 17940 g
176.0 N
4 404 Gs
|
16.15 kg / 16146 g
158.4 N
~0 Gs
|
| 5 mm |
14.58 kg / 14582 g
143.1 N
3 971 Gs
|
13.12 kg / 13124 g
128.7 N
~0 Gs
|
| 10 mm |
8.01 kg / 8015 g
78.6 N
2 944 Gs
|
7.21 kg / 7213 g
70.8 N
~0 Gs
|
| 20 mm |
2.32 kg / 2319 g
22.7 N
1 583 Gs
|
2.09 kg / 2087 g
20.5 N
~0 Gs
|
| 50 mm |
0.12 kg / 120 g
1.2 N
359 Gs
|
0.11 kg / 108 g
1.1 N
~0 Gs
|
MPL 40x15x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 10.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 8.0 cm |
| Czasomierz | 20 Gs (2.0 mT) | 6.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 5.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 40x15x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
24.04 km/h
(6.68 m/s)
|
0.50 J | |
| 30 mm |
39.29 km/h
(10.91 m/s)
|
1.34 J | |
| 50 mm |
50.66 km/h
(14.07 m/s)
|
2.23 J | |
| 100 mm |
71.63 km/h
(19.90 m/s)
|
4.45 J |
MPL 40x15x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 40x15x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 14 969 Mx | 149.7 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
MPL 40x15x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 11.35 kg | Standard |
| Woda (dno rzeki) |
13.00 kg
(+1.65 kg Zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na pionowej ścianie magnes zachowa tylko ~20-30% siły oderwania.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne propozycje
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po 10 lat utrata mocy wynosi tylko ~1% (wg testów).
- Charakteryzują się wyjątkową odpornością na demagnetyzację, nawet w silnych polach zewnętrznych.
- Dzięki warstwie ochronnej (NiCuNi, złoto, srebro) zyskują nowoczesny, błyszczący wygląd.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie nawet małych elementów.
- Dzięki zaawansowanej technologii radzą sobie w temperaturach sięgających 230°C, zachowując swoje parametry.
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy komputery.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wysoka temperatura to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wysoki koszt zakupu w porównaniu do ferrytów to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- przy zastosowaniu blachy ze specjalnej stali pomiarowej, gwarantującej pełne nasycenie magnetyczne
- posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez najmniejszej warstwy izolującej pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Udźwig magnesu w użyciu – kluczowe czynniki
- Przerwa między magnesem a stalą – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub brudem) drastycznie redukuje efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i wyższy udźwig. Chropowatość tworzą dystans powietrzny.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach są słabsze, a w niskich mogą być silniejsze (do pewnej granicy).
Udźwig określano stosując wypolerowanej blachy o optymalnej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina pomiędzy magnesem, a blachą redukuje udźwig.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ostrzeżenie dla sercowców
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę obsługę magnesów.
Unikaj kontaktu w przypadku alergii
Pewna grupa użytkowników wykazuje nadwrażliwość na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może skutkować silną reakcję alergiczną. Wskazane jest noszenie rękawiczek ochronnych.
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Małe elementy mogą zostać aspirrowane, co prowadzi do poważnych obrażeń. Trzymaj z dala od dzieci i zwierząt.
Smartfony i tablety
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Uszkodzenia ciała
Ryzyko obrażeń: Siła przyciągania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet otwarte złamania. Stosuj solidne rękawice ochronne.
Kruchość materiału
Magnesy neodymowe to spiek proszkowy, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich pęknięcie na ostre odłamki.
Ogromna siła
Używaj magnesy z rozwagą. Ich potężna moc może zszokować nawet profesjonalistów. Planuj ruchy i nie lekceważ ich siły.
Niszczenie danych
Ekstremalne pole magnetyczne może usunąć informacje na kartach płatniczych, dyskach twardych i innych pamięciach. Trzymaj dystans min. 10 cm.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po przekroczeniu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
