MPL 40x10x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020150
GTIN/EAN: 5906301811565
Długość
40 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
12 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.31 kg / 91.33 N
Indukcja magnetyczna
275.57 mT / 2756 Gs
Powłoka
[NiCuNi] nikiel
4.87 ZŁ z VAT / szt. + cena za transport
3.96 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
albo skontaktuj się poprzez
formularz
na stronie kontakt.
Udźwig oraz wygląd elementów magnetycznych wyliczysz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Dane - MPL 40x10x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 40x10x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020150 |
| GTIN/EAN | 5906301811565 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 40 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 12 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.31 kg / 91.33 N |
| Indukcja magnetyczna ~ ? | 275.57 mT / 2756 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza inżynierska magnesu neodymowego - parametry techniczne
Poniższe dane są rezultat kalkulacji inżynierskiej. Wartości zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą odbiegać od wyników symulacji. Traktuj te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - charakterystyka
MPL 40x10x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2755 Gs
275.5 mT
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
uwaga |
| 1 mm |
2413 Gs
241.3 mT
|
7.14 kg / 15.75 lbs
7143.1 g / 70.1 N
|
uwaga |
| 2 mm |
2044 Gs
204.4 mT
|
5.13 kg / 11.31 lbs
5128.9 g / 50.3 N
|
uwaga |
| 3 mm |
1703 Gs
170.3 mT
|
3.56 kg / 7.85 lbs
3559.5 g / 34.9 N
|
uwaga |
| 5 mm |
1173 Gs
117.3 mT
|
1.69 kg / 3.72 lbs
1688.2 g / 16.6 N
|
słaby uchwyt |
| 10 mm |
522 Gs
52.2 mT
|
0.33 kg / 0.74 lbs
334.9 g / 3.3 N
|
słaby uchwyt |
| 15 mm |
277 Gs
27.7 mT
|
0.09 kg / 0.21 lbs
94.2 g / 0.9 N
|
słaby uchwyt |
| 20 mm |
163 Gs
16.3 mT
|
0.03 kg / 0.07 lbs
32.8 g / 0.3 N
|
słaby uchwyt |
| 30 mm |
69 Gs
6.9 mT
|
0.01 kg / 0.01 lbs
5.8 g / 0.1 N
|
słaby uchwyt |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.5 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 40x10x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.86 kg / 4.11 lbs
1862.0 g / 18.3 N
|
| 1 mm | Stal (~0.2) |
1.43 kg / 3.15 lbs
1428.0 g / 14.0 N
|
| 2 mm | Stal (~0.2) |
1.03 kg / 2.26 lbs
1026.0 g / 10.1 N
|
| 3 mm | Stal (~0.2) |
0.71 kg / 1.57 lbs
712.0 g / 7.0 N
|
| 5 mm | Stal (~0.2) |
0.34 kg / 0.75 lbs
338.0 g / 3.3 N
|
| 10 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
18.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - udźwig wertykalny
MPL 40x10x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.79 kg / 6.16 lbs
2793.0 g / 27.4 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.86 kg / 4.11 lbs
1862.0 g / 18.3 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.93 kg / 2.05 lbs
931.0 g / 9.1 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.66 kg / 10.26 lbs
4655.0 g / 45.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 40x10x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.93 kg / 2.05 lbs
931.0 g / 9.1 N
|
| 1 mm |
|
2.33 kg / 5.13 lbs
2327.5 g / 22.8 N
|
| 2 mm |
|
4.66 kg / 10.26 lbs
4655.0 g / 45.7 N
|
| 3 mm |
|
6.98 kg / 15.39 lbs
6982.5 g / 68.5 N
|
| 5 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
| 10 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
| 11 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
| 12 mm |
|
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
Tabela 5: Praca w cieple (stabilność) - limit termiczny
MPL 40x10x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.31 kg / 20.53 lbs
9310.0 g / 91.3 N
|
OK |
| 40 °C | -2.2% |
9.11 kg / 20.07 lbs
9105.2 g / 89.3 N
|
OK |
| 60 °C | -4.4% |
8.90 kg / 19.62 lbs
8900.4 g / 87.3 N
|
|
| 80 °C | -6.6% |
8.70 kg / 19.17 lbs
8695.5 g / 85.3 N
|
|
| 100 °C | -28.8% |
6.63 kg / 14.61 lbs
6628.7 g / 65.0 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - zasięg pola
MPL 40x10x4 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.71 kg / 41.25 lbs
4 164 Gs
|
2.81 kg / 6.19 lbs
2807 g / 27.5 N
|
N/A |
| 1 mm |
16.57 kg / 36.53 lbs
5 185 Gs
|
2.49 kg / 5.48 lbs
2486 g / 24.4 N
|
14.91 kg / 32.88 lbs
~0 Gs
|
| 2 mm |
14.36 kg / 31.65 lbs
4 826 Gs
|
2.15 kg / 4.75 lbs
2153 g / 21.1 N
|
12.92 kg / 28.48 lbs
~0 Gs
|
| 3 mm |
12.24 kg / 26.98 lbs
4 455 Gs
|
1.84 kg / 4.05 lbs
1836 g / 18.0 N
|
11.01 kg / 24.28 lbs
~0 Gs
|
| 5 mm |
8.61 kg / 18.98 lbs
3 737 Gs
|
1.29 kg / 2.85 lbs
1291 g / 12.7 N
|
7.75 kg / 17.08 lbs
~0 Gs
|
| 10 mm |
3.39 kg / 7.48 lbs
2 346 Gs
|
0.51 kg / 1.12 lbs
509 g / 5.0 N
|
3.05 kg / 6.73 lbs
~0 Gs
|
| 20 mm |
0.67 kg / 1.48 lbs
1 045 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.61 kg / 1.34 lbs
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 lbs
207 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.03 lbs
138 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
51 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
39 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 40x10x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 40x10x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
28.72 km/h
(7.98 m/s)
|
0.38 J | |
| 30 mm |
48.67 km/h
(13.52 m/s)
|
1.10 J | |
| 50 mm |
62.82 km/h
(17.45 m/s)
|
1.83 J | |
| 100 mm |
88.83 km/h
(24.68 m/s)
|
3.65 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 40x10x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 40x10x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 840 Mx | 98.4 µWb |
| Współczynnik Pc | 0.26 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 40x10x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.31 kg | Standard |
| Woda (dno rzeki) |
10.66 kg
(+1.35 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma jedynie ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. blacha karoseryjna) znacząco ogranicza udźwig magnesu.
3. Wytrzymałość temperaturowa
*Dla standardowych magnesów maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.26
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają wysoki współczynnik koercji.
- Wykończenie materiałami takimi jak nikiel czy złoto nadaje im profesjonalny i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy komputery.
- Doskonała relacja wielkości do siły – są małe, ale bardzo silne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Wady
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Ze względu na twardość, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w gniazdo z gwintem.
- Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- na bloku wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- której wymiar poprzeczny sięga przynajmniej 10 mm
- charakteryzującej się brakiem chropowatości
- przy całkowitym braku odstępu (brak zanieczyszczeń)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Czynniki determinujące udźwig w warunkach realnych
- Odstęp (pomiędzy magnesem a metalem), ponieważ nawet bardzo mała odległość (np. 0,5 mm) powoduje zmniejszenie udźwigu nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Masywność podłoża – zbyt cienka blacha nie przyjmuje całego pola, przez co część mocy jest tracona w powietrzu.
- Rodzaj stali – stal miękka daje najlepsze rezultaty. Domieszki stopowe redukują właściwości magnetyczne i siłę trzymania.
- Gładkość – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Ciepło – magnesy neodymowe posiadają ujemny współczynnik temperaturowy. Gdy jest gorąco są słabsze, a na mrozie mogą być silniejsze (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy siłach działających równolegle nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą obniża siłę trzymania.
Ostrzeżenia
Nie lekceważ mocy
Zachowaj rozwagę. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często szybciej niż zdążysz zareagować.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
Ryzyko zmiażdżenia
Zagrożenie fizyczne: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Zagrożenie dla nawigacji
Moduły GPS i smartfony są niezwykle wrażliwe na wpływ magnesów. Bliskie sąsiedztwo z silnym magnesem może rozalibrować czujniki w Twoim telefonie.
Interferencja medyczna
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz urządzenia wspomagające.
Dla uczulonych
Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Nie zbliżaj do komputera
Ochrona danych: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Ryzyko pęknięcia
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są podatne na pęknięcia. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na ostre odłamki.
Chronić przed dziećmi
Neodymowe magnesy to nie zabawki. Połknięcie kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stwarza bezpośrednie zagrożenie życia i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Wrażliwość na ciepło
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o magnesy odporne na ciepło (H, SH, UH).
