Magnesy neodymowe – najmocniejsze na rynku

Potrzebujesz silnego pola magnetycznego? Mamy w ofercie kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. To najlepszy wybór do użytku w domu, warsztatu oraz modelarstwa. Sprawdź naszą ofertę z szybką wysyłką.

sprawdź cennik i wymiary

Zestawy do magnet fishing (hobbystów)

Zacznij swoje hobby z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny są niezawodne w rzekach i jeziorach.

znajdź sprzęt do poszukiwań

Magnetyczne systemy mocowań

Sprawdzone rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) gwarantują błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy mocowaniu lamp, sensorów oraz reklam.

sprawdź zastosowania przemysłowe

🚚 Zamów do 14:00 – wyślemy tego samego dnia!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 3 dni

MPL 3x3x2 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020147

GTIN/EAN: 5906301811534

5.00

Długość

3 mm [±0,1 mm]

Szerokość

3 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

0.13 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.36 kg / 3.49 N

Indukcja magnetyczna

472.94 mT / 4729 Gs

Powłoka

[NiCuNi] nikiel

0.1722 z VAT / szt. + cena za transport

0.1400 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.1400 ZŁ
0.1722 ZŁ
cena od 10000 szt.
0.1260 ZŁ
0.1550 ZŁ
cena od 30000 szt.
0.1162 ZŁ
0.1429 ZŁ
Chcesz się targować?

Skontaktuj się z nami telefonicznie +48 888 99 98 98 alternatywnie napisz za pomocą formularz zgłoszeniowy przez naszą stronę.
Właściwości oraz formę magnesu neodymowego zobaczysz dzięki naszemu kalkulatorze siły.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Karta produktu - MPL 3x3x2 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 3x3x2 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020147
GTIN/EAN 5906301811534
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 3 mm [±0,1 mm]
Szerokość 3 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 0.13 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.36 kg / 3.49 N
Indukcja magnetyczna ~ ? 472.94 mT / 4729 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 3x3x2 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - raport

Poniższe wartości są bezpośredni efekt kalkulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako pomoc pomocniczą dla projektantów.

Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - wykres oddziaływania
MPL 3x3x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 4719 Gs
471.9 mT
0.36 kg / 360.0 g
3.5 N
niskie ryzyko
1 mm 2223 Gs
222.3 mT
0.08 kg / 79.9 g
0.8 N
niskie ryzyko
2 mm 966 Gs
96.6 mT
0.02 kg / 15.1 g
0.1 N
niskie ryzyko
3 mm 468 Gs
46.8 mT
0.00 kg / 3.5 g
0.0 N
niskie ryzyko
5 mm 153 Gs
15.3 mT
0.00 kg / 0.4 g
0.0 N
niskie ryzyko
10 mm 26 Gs
2.6 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
15 mm 9 Gs
0.9 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
20 mm 4 Gs
0.4 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
30 mm 1 Gs
0.1 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
50 mm 0 Gs
0.0 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko

Tabela 2: Siła równoległa zsuwania (ściana)
MPL 3x3x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.07 kg / 72.0 g
0.7 N
1 mm Stal (~0.2) 0.02 kg / 16.0 g
0.2 N
2 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
3 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 3x3x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.11 kg / 108.0 g
1.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.07 kg / 72.0 g
0.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.04 kg / 36.0 g
0.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.18 kg / 180.0 g
1.8 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 3x3x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.04 kg / 36.0 g
0.4 N
1 mm
25%
0.09 kg / 90.0 g
0.9 N
2 mm
50%
0.18 kg / 180.0 g
1.8 N
5 mm
100%
0.36 kg / 360.0 g
3.5 N
10 mm
100%
0.36 kg / 360.0 g
3.5 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - spadek mocy
MPL 3x3x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 0.36 kg / 360.0 g
3.5 N
OK
40 °C -2.2% 0.35 kg / 352.1 g
3.5 N
OK
60 °C -4.4% 0.34 kg / 344.2 g
3.4 N
OK
80 °C -6.6% 0.34 kg / 336.2 g
3.3 N
100 °C -28.8% 0.26 kg / 256.3 g
2.5 N

Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 3x3x2 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 1.24 kg / 1236 g
12.1 N
5 677 Gs
N/A
1 mm 0.63 kg / 627 g
6.2 N
6 725 Gs
0.56 kg / 565 g
5.5 N
~0 Gs
2 mm 0.27 kg / 274 g
2.7 N
4 447 Gs
0.25 kg / 247 g
2.4 N
~0 Gs
3 mm 0.12 kg / 117 g
1.1 N
2 903 Gs
0.11 kg / 105 g
1.0 N
~0 Gs
5 mm 0.02 kg / 24 g
0.2 N
1 324 Gs
0.02 kg / 22 g
0.2 N
~0 Gs
10 mm 0.00 kg / 1 g
0.0 N
306 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
20 mm 0.00 kg / 0 g
0.0 N
52 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
4 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (implanty) - środki ostrożności
MPL 3x3x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 2.0 cm
Implant słuchowy 10 Gs (1.0 mT) 1.5 cm
Czasomierz 20 Gs (2.0 mT) 1.5 cm
Telefon / Smartfon 40 Gs (4.0 mT) 1.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 1.0 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 3x3x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 53.07 km/h
(14.74 m/s)
0.01 J
30 mm 91.92 km/h
(25.53 m/s)
0.04 J
50 mm 118.67 km/h
(32.96 m/s)
0.07 J
100 mm 167.83 km/h
(46.62 m/s)
0.14 J

Tabela 9: Specyfikacja ochrony powierzchni
MPL 3x3x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Strumień)
MPL 3x3x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 429 Mx 4.3 µWb
Współczynnik Pc 0.66 Wysoki (Stabilny)

Tabela 11: Zastosowanie podwodne
MPL 3x3x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.36 kg Standard
Woda (dno rzeki) 0.41 kg
(+0.05 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Udźwig w pionie

*Ważne: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły oderwania.

2. Efektywność, a grubość stali

*Cienka blacha (np. obudowa PC 0.5mm) znacząco ogranicza udźwig magnesu.

3. Praca w cieple

*W klasie N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Skład chemiczny materiału
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020147-2025
Kalkulator miar
Siła oderwania

Pole magnetyczne

Sprawdź inne oferty

Produkt ten to ekstremalnie mocny magnes płytkowy wykonany z materiału NdFeB, co przy wymiarach 3x3x2 mm i wadze 0.13 g gwarantuje klasę premium połączenia. Jako magnes blokowy o dużej mocy (ok. 0.36 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Dodatkowo, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Uważaj na palce! Magnesy o sile 0.36 kg potrafią bardzo mocno uszczypnąć i spowodować krwiaki. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Stanowią kluczowy element w produkcji generatorów oraz systemów transportu bliskiego. Dzięki płaskiej powierzchni i dużej sile (ok. 0.36 kg), są idealne jako domykacze w meblarstwie oraz elementy montażowe w automatyce. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (3x3 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 3x3x2 mm, co przy wadze 0.13 g czyni go elementem o wysokiej gęstości energii. Jest to blok magnetyczny o gabarytach 3x3x2 mm i masie własnej 0.13 g, gotowy do pracy w temperaturze do 80°C. Produkt spełnia normy dla magnesów klasy N38.

Wady i zalety neodymowych magnesów Nd2Fe14B.

Korzyści

Magnesy neodymowe to nie tylko moc przyciągania, ale także inne istotne cechy, takie jak::
  • Ich parametry są stabilne w czasie; po 10 latach użytkowania zmniejszenie udźwigu to znikome ~1%.
  • Charakteryzują się niezwykłą odpornością na rozmagnesowanie, nawet w obecności innych silnych magnesów.
  • Dzięki warstwie ochronnej (nikiel, złoto, Ag) zyskują nowoczesny, metaliczny wygląd.
  • Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
  • Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.

Słabe strony

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
  • Nie należy ich nawiercać – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być barierą.

Analiza siły trzymania

Siła oderwania magnesu w optymalnych warunkachco się na to składa?

Parametr siły jest wynikiem testu laboratoryjnego przeprowadzonego w specyficznych, idealnych warunkach:
  • przy użyciu blachy ze specjalnej stali pomiarowej, gwarantującej maksymalne skupienie pola
  • posiadającej masywność co najmniej 10 mm dla pełnego zamknięcia strumienia
  • o idealnie gładkiej powierzchni styku
  • w warunkach braku dystansu (metal do metalu)
  • przy osiowym wektorze siły (kąt 90 stopni)
  • w stabilnej temperaturze pokojowej

Czynniki determinujące udźwig w warunkach realnych

Trzeba mieć na uwadze, że trzymanie magnesu będzie inne pod wpływem następujących czynników, zaczynając od najistotniejszych:
  • Dystans (między magnesem a metalem), gdyż nawet niewielka odległość (np. 0,5 mm) powoduje drastyczny spadek siły nawet o 50% (dotyczy to także lakieru, rdzy czy brudu).
  • Kierunek siły – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
  • Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
  • Skład materiału – nie każda stal przyciąga się identycznie. Wysoka zawartość węgla osłabiają efekt przyciągania.
  • Gładkość – pełny kontakt jest możliwy tylko na gładkiej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Wpływ temperatury – wysoka temperatura osłabia pole magnetyczne. Przekroczenie temperatury granicznej może trwale rozmagnesować magnes.

Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o odpowiedniej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle nośność jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą zmniejsza nośność.

Ostrzeżenia
Łatwopalność

Ryzyko wybuchu: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce amatorsko, gdyż może to wywołać pożar.

Alergia na nikiel

Pewna grupa użytkowników ma uczulenie na nikiel, którym pokryta jest większość nasze produkty. Częste dotykanie może wywołać zaczerwienienie skóry. Zalecamy używanie rękawiczek ochronnych.

Rozruszniki serca

Pacjenci z kardiowerterem muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie implantu.

Limity termiczne

Kontroluj ciepło. Podgrzanie magnesu na wysoką temperaturę trwale osłabi jego domenę magnetyczną i udźwig.

Wpływ na smartfony

Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w smartfonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby nie uszkodzić czujników.

Rozprysk materiału

Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Noś okulary.

Karty i dyski

Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).

Produkt nie dla dzieci

Bezwzględnie zabezpiecz magnesy przed najmłodszymi. Ryzyko zadławienia jest wysokie, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.

Uszkodzenia ciała

Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować rany, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.

Bezpieczna praca

Używaj magnesy odpowiedzialnie. Ich ogromna siła może zaskoczyć nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.

Safety First! Szczegółowe omówienie o zagrożeniach w artykule: BHP magnesów neodymowych.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98