Magnesy neodymowe – najmocniejsze na rynku

Szukasz ogromnej mocy w małym rozmiarze? Posiadamy w sprzedaży bogatą gamę magnesów o różnych kształtach i wymiarach. Doskonale sprawdzą się do zastosowań domowych, warsztatu oraz modelarstwa. Przejrzyj asortyment w naszym magazynie.

sprawdź pełną ofertę

Uchwyty do poszukiwań wodnych

Rozpocznij przygodę polegającą na poszukiwaniu skarbów pod wodą! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i ogromnego udźwigu. Nierdzewna konstrukcja oraz mocne linki są niezawodne w rzekach i jeziorach.

wybierz sprzęt do poszukiwań

Niezawodne uchwyty z gwintem

Sprawdzone rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na halach produkcyjnych. Są niezastąpione przy instalacji oświetlenia, sensorów oraz banerów.

zobacz zastosowania przemysłowe

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy od ręki!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 2 dni

MPL 3x3x2 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020147

GTIN/EAN: 5906301811534

5.00

Długość

3 mm [±0,1 mm]

Szerokość

3 mm [±0,1 mm]

Wysokość

2 mm [±0,1 mm]

Waga

0.13 g

Kierunek magnesowania

↑ osiowy

Udźwig

0.36 kg / 3.49 N

Indukcja magnetyczna

472.94 mT / 4729 Gs

Powłoka

[NiCuNi] nikiel

0.1722 z VAT / szt. + cena za transport

0.1400 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.1400 ZŁ
0.1722 ZŁ
cena od 10000 szt.
0.1260 ZŁ
0.1550 ZŁ
cena od 30000 szt.
0.1162 ZŁ
0.1429 ZŁ
Nie jesteś pewien wyboru?

Zadzwoń i zapytaj +48 888 99 98 98 albo napisz poprzez formularz przez naszą stronę.
Właściwości a także budowę elementów magnetycznych testujesz u nas w naszym kalkulatorze magnetycznym.

Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!

Dane techniczne - MPL 3x3x2 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 3x3x2 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020147
GTIN/EAN 5906301811534
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 3 mm [±0,1 mm]
Szerokość 3 mm [±0,1 mm]
Wysokość 2 mm [±0,1 mm]
Waga 0.13 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 0.36 kg / 3.49 N
Indukcja magnetyczna ~ ? 472.94 mT / 4729 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 3x3x2 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza techniczna magnesu neodymowego - parametry techniczne

Poniższe informacje stanowią rezultat symulacji inżynierskiej. Wyniki oparte są na modelach dla materiału Nd2Fe14B. Realne parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 3x3x2 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 4719 Gs
471.9 mT
0.36 kg / 360.0 g
3.5 N
niskie ryzyko
1 mm 2223 Gs
222.3 mT
0.08 kg / 79.9 g
0.8 N
niskie ryzyko
2 mm 966 Gs
96.6 mT
0.02 kg / 15.1 g
0.1 N
niskie ryzyko
3 mm 468 Gs
46.8 mT
0.00 kg / 3.5 g
0.0 N
niskie ryzyko
5 mm 153 Gs
15.3 mT
0.00 kg / 0.4 g
0.0 N
niskie ryzyko
10 mm 26 Gs
2.6 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
15 mm 9 Gs
0.9 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
20 mm 4 Gs
0.4 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
30 mm 1 Gs
0.1 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko
50 mm 0 Gs
0.0 mT
0.00 kg / 0.0 g
0.0 N
niskie ryzyko

Tabela 2: Siła równoległa zsuwania (ściana)
MPL 3x3x2 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.07 kg / 72.0 g
0.7 N
1 mm Stal (~0.2) 0.02 kg / 16.0 g
0.2 N
2 mm Stal (~0.2) 0.00 kg / 4.0 g
0.0 N
3 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
5 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 3x3x2 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.11 kg / 108.0 g
1.1 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.07 kg / 72.0 g
0.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.04 kg / 36.0 g
0.4 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.18 kg / 180.0 g
1.8 N

Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 3x3x2 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.04 kg / 36.0 g
0.4 N
1 mm
25%
0.09 kg / 90.0 g
0.9 N
2 mm
50%
0.18 kg / 180.0 g
1.8 N
5 mm
100%
0.36 kg / 360.0 g
3.5 N
10 mm
100%
0.36 kg / 360.0 g
3.5 N

Tabela 5: Wytrzymałość temperaturowa (stabilność) - spadek mocy
MPL 3x3x2 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 0.36 kg / 360.0 g
3.5 N
OK
40 °C -2.2% 0.35 kg / 352.1 g
3.5 N
OK
60 °C -4.4% 0.34 kg / 344.2 g
3.4 N
OK
80 °C -6.6% 0.34 kg / 336.2 g
3.3 N
100 °C -28.8% 0.26 kg / 256.3 g
2.5 N

Tabela 6: Interakcja magnes-magnes (odpychanie) - siły w układzie
MPL 3x3x2 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 1.24 kg / 1236 g
12.1 N
5 677 Gs
N/A
1 mm 0.63 kg / 627 g
6.2 N
6 725 Gs
0.56 kg / 565 g
5.5 N
~0 Gs
2 mm 0.27 kg / 274 g
2.7 N
4 447 Gs
0.25 kg / 247 g
2.4 N
~0 Gs
3 mm 0.12 kg / 117 g
1.1 N
2 903 Gs
0.11 kg / 105 g
1.0 N
~0 Gs
5 mm 0.02 kg / 24 g
0.2 N
1 324 Gs
0.02 kg / 22 g
0.2 N
~0 Gs
10 mm 0.00 kg / 1 g
0.0 N
306 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
20 mm 0.00 kg / 0 g
0.0 N
52 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
4 Gs
0.00 kg / 0 g
0.0 N
~0 Gs

Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 3x3x2 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 2.0 cm
Implant słuchowy 10 Gs (1.0 mT) 1.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 1.5 cm
Urządzenie mobilne 40 Gs (4.0 mT) 1.0 cm
Pilot do auta 50 Gs (5.0 mT) 1.0 cm
Karta płatnicza 400 Gs (40.0 mT) 0.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 0.5 cm

Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 3x3x2 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 53.07 km/h
(14.74 m/s)
0.01 J
30 mm 91.92 km/h
(25.53 m/s)
0.04 J
50 mm 118.67 km/h
(32.96 m/s)
0.07 J
100 mm 167.83 km/h
(46.62 m/s)
0.14 J

Tabela 9: Specyfikacja ochrony powierzchni
MPL 3x3x2 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Pc)
MPL 3x3x2 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 429 Mx 4.3 µWb
Współczynnik Pc 0.66 Wysoki (Stabilny)

Tabela 11: Zastosowanie podwodne
MPL 3x3x2 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 0.36 kg Standard
Woda (dno rzeki) 0.41 kg
(+0.05 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Montaż na ścianie (ześlizg)

*Uwaga: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.

2. Grubość podłoża

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.

3. Stabilność termiczna

*W klasie N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020147-2025
Kalkulator miar
Udźwig magnesu

Moc pola

Inne produkty

Produkt ten to ekstremalnie mocny magnes płytkowy wykonany z materiału NdFeB, co przy wymiarach 3x3x2 mm i wadze 0.13 g gwarantuje najwyższą jakość połączenia. Ten prostopadłościan o sile 3.49 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 3x3x2 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 3x3x2 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak separatory magnetyczne oraz silniki liniowe. Dzięki płaskiej powierzchni i dużej sile (ok. 0.36 kg), są idealne jako domykacze w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 3x3x2 / N38 polecamy stosować kleje dwuskładnikowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Oś magnetyczna przebiega przez najkrótszy wymiar, co jest typowe dla magnesów chwytakowych. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (3x3 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 3x3x2 mm, co przy wadze 0.13 g czyni go elementem o wysokiej gęstości energii. Jest to blok magnetyczny o gabarytach 3x3x2 mm i masie własnej 0.13 g, gotowy do pracy w temperaturze do 80°C. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Wady oraz zalety magnesów neodymowych Nd2Fe14B.

Zalety

Poza imponującą mocą, magnesy neodymowe oferują dodatkowe korzyści::
  • Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi zaledwie ~1% (wg testów).
  • Zewnętrzne pola magnetyczne nie wpływają na ich utraty mocy – posiadają dużą zdolność koercji.
  • Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest refleksyjna i prezentuje się elegancko.
  • Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia mocne przyciąganie nawet małych elementów.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
  • Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz przemyśle komputerowym.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.

Minusy

Oto ograniczenia i wady, o których musisz wiedzieć:
  • Należy uważać na wstrząsy – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy jest kluczowa.
  • Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od bryły). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
  • Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
  • Drobne magnesy to ryzyko – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Cena – są droższe niż magnesy ferrytowe, co przy produkcji masowej może być istotnym kosztem.

Analiza siły trzymania

Maksymalna siła przyciągania magnesuod czego zależy?

Siła trzymania 0.36 kg jest rezultatem pomiaru zrealizowanego w specyficznych, idealnych warunkach:
  • na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
  • której grubość to min. 10 mm
  • z płaszczyzną oczyszczoną i gładką
  • w warunkach idealnego przylegania (metal do metalu)
  • dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
  • w warunkach ok. 20°C

Praktyczne aspekty udźwigu – czynniki

W rzeczywistych zastosowaniach, rzeczywisty udźwig zależy od kilku kluczowych aspektów, które przedstawiamy od najbardziej istotnych:
  • Dystans – obecność jakiejkolwiek warstwy (farba, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
  • Sposób obciążenia – deklarowany udźwig dotyczy ciągnięcia w pionie. Przy próbie przesunięcia, magnes trzyma dużo słabiej (zazwyczaj ok. 20-30% siły maksymalnej).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
  • Materiał blachy – stal miękka daje najlepsze rezultaty. Większa zawartość węgla zmniejszają właściwości magnetyczne i udźwig.
  • Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności zmniejszają realną powierzchnię styku, osłabiając magnes.
  • Ciepło – magnesy neodymowe posiadają wrażliwość na temperaturę. Gdy jest gorąco są słabsze, a w niskich zyskują na sile (do pewnej granicy).

Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie udźwig jest mniejszy nawet 75%. Co więcej, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą zmniejsza nośność.

Instrukcja bezpiecznej obsługi magnesów
Ochrona dłoni

Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Bądź ostrożny!

Zakłócenia GPS i telefonów

Intensywne promieniowanie magnetyczne wpływa negatywnie na działanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.

Nie wierć w magnesach

Proszek powstający podczas cięcia magnesów jest wybuchowy. Nie wierć w magnesach w warunkach domowych.

Unikaj kontaktu w przypadku alergii

Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub wybierz wersje w obudowie plastikowej.

Uwaga na odpryski

Chroń oczy. Magnesy mogą pęknąć przy gwałtownym złączeniu, wyrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.

Interferencja medyczna

Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować stymulatory i defibrylatory. Unikaj kontaktu, jeśli posiadasz implanty elektroniczne.

Trwała utrata siły

Standardowe magnesy neodymowe (typ N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.

To nie jest zabawka

Silne magnesy nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich złączeniem się w jelitach, co stanowi bezpośrednie zagrożenie życia i wiąże się z koniecznością natychmiastowej operacji.

Siła neodymu

Używaj magnesy z rozwagą. Ich gigantyczny udźwig może zaskoczyć nawet profesjonalistów. Zachowaj czujność i nie lekceważ ich siły.

Bezpieczny dystans

Ochrona danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).

Zachowaj ostrożność! Chcesz wiedzieć więcej? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98