MPL 3x3x2 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020147
GTIN/EAN: 5906301811534
Długość
3 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
2 mm [±0,1 mm]
Waga
0.13 g
Kierunek magnesowania
↑ osiowy
Udźwig
0.36 kg / 3.49 N
Indukcja magnetyczna
472.94 mT / 4729 Gs
Powłoka
[NiCuNi] nikiel
0.1722 ZŁ z VAT / szt. + cena za transport
0.1400 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie napisz za pomocą
formularz zgłoszeniowy
przez naszą stronę.
Udźwig oraz kształt magnesów sprawdzisz dzięki naszemu
modułowym kalkulatorze.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Parametry - MPL 3x3x2 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 3x3x2 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020147 |
| GTIN/EAN | 5906301811534 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 3 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 2 mm [±0,1 mm] |
| Waga | 0.13 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 0.36 kg / 3.49 N |
| Indukcja magnetyczna ~ ? | 472.94 mT / 4729 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Niniejsze dane stanowią wynik analizy matematycznej. Wyniki zostały wyliczone na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Traktuj te wyliczenia jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - spadek mocy
MPL 3x3x2 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4719 Gs
471.9 mT
|
0.36 kg / 360.0 g
3.5 N
|
niskie ryzyko |
| 1 mm |
2223 Gs
222.3 mT
|
0.08 kg / 79.9 g
0.8 N
|
niskie ryzyko |
| 2 mm |
966 Gs
96.6 mT
|
0.02 kg / 15.1 g
0.1 N
|
niskie ryzyko |
| 3 mm |
468 Gs
46.8 mT
|
0.00 kg / 3.5 g
0.0 N
|
niskie ryzyko |
| 5 mm |
153 Gs
15.3 mT
|
0.00 kg / 0.4 g
0.0 N
|
niskie ryzyko |
| 10 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 15 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 20 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (ściana)
MPL 3x3x2 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.07 kg / 72.0 g
0.7 N
|
| 1 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 3x3x2 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.11 kg / 108.0 g
1.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.07 kg / 72.0 g
0.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.04 kg / 36.0 g
0.4 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.18 kg / 180.0 g
1.8 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - dobór blachy
MPL 3x3x2 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.04 kg / 36.0 g
0.4 N
|
| 1 mm |
|
0.09 kg / 90.0 g
0.9 N
|
| 2 mm |
|
0.18 kg / 180.0 g
1.8 N
|
| 5 mm |
|
0.36 kg / 360.0 g
3.5 N
|
| 10 mm |
|
0.36 kg / 360.0 g
3.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - próg odporności
MPL 3x3x2 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.36 kg / 360.0 g
3.5 N
|
OK |
| 40 °C | -2.2% |
0.35 kg / 352.1 g
3.5 N
|
OK |
| 60 °C | -4.4% |
0.34 kg / 344.2 g
3.4 N
|
OK |
| 80 °C | -6.6% |
0.34 kg / 336.2 g
3.3 N
|
|
| 100 °C | -28.8% |
0.26 kg / 256.3 g
2.5 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 3x3x2 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
1.24 kg / 1236 g
12.1 N
5 677 Gs
|
N/A |
| 1 mm |
0.63 kg / 627 g
6.2 N
6 725 Gs
|
0.56 kg / 565 g
5.5 N
~0 Gs
|
| 2 mm |
0.27 kg / 274 g
2.7 N
4 447 Gs
|
0.25 kg / 247 g
2.4 N
~0 Gs
|
| 3 mm |
0.12 kg / 117 g
1.1 N
2 903 Gs
|
0.11 kg / 105 g
1.0 N
~0 Gs
|
| 5 mm |
0.02 kg / 24 g
0.2 N
1 324 Gs
|
0.02 kg / 22 g
0.2 N
~0 Gs
|
| 10 mm |
0.00 kg / 1 g
0.0 N
306 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 20 mm |
0.00 kg / 0 g
0.0 N
52 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
| 50 mm |
0.00 kg / 0 g
0.0 N
4 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (elektronika) - środki ostrożności
MPL 3x3x2 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 2.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 1.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 1.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 1.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 1.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 0.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 0.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 3x3x2 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
53.07 km/h
(14.74 m/s)
|
0.01 J | |
| 30 mm |
91.92 km/h
(25.53 m/s)
|
0.04 J | |
| 50 mm |
118.67 km/h
(32.96 m/s)
|
0.07 J | |
| 100 mm |
167.83 km/h
(46.62 m/s)
|
0.14 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 3x3x2 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 3x3x2 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 429 Mx | 4.3 µWb |
| Współczynnik Pc | 0.66 | Wysoki (Stabilny) |
Tabela 11: Hydrostatyka i wyporność
MPL 3x3x2 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 0.36 kg | Standard |
| Woda (dno rzeki) |
0.41 kg
(+0.05 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.66
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik odporności magnetycznej.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i motorów elektrycznych, po precyzyjną diagnostykę.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują potężny udźwig, co jest kluczowe przy miniaturyzacji.
Wady
- Należy uważać na wstrząsy – materiał jest kruchy i może odprysnąć. Zabezpieczenie w postaci obudowy jest kluczowa.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Charakterystyka udźwigu
Siła oderwania magnesu w optymalnych warunkach – co się na to składa?
- na podłożu wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- posiadającej masywność minimum 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- w warunkach bezszczelinowych (metal do metalu)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Odstęp (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) może spowodować redukcję siły nawet o 50% (dotyczy to także lakieru, korozji czy brudu).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła ścinająca magnesu po powierzchni jest standardowo kilkukrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład chemiczny podłoża – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i udźwig.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o odpowiedniej grubości, przy prostopadłym działaniu siły, z kolei przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża udźwig.
Ostrzeżenia
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne wpływa na elektronikę medyczną. Utrzymuj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Zagrożenie dla elektroniki
Bardzo silne pole magnetyczne może skasować dane na kartach kredytowych, nośnikach HDD i innych nośnikach magnetycznych. Utrzymuj odległość min. 10 cm.
Bezpieczna praca
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Nie dawać dzieciom
Silne magnesy nie służą do zabawy. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Limity termiczne
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli wymagasz odporności powyżej 80°C, zapytaj nas o specjalne serie wysokotemperaturowe (H, SH, UH).
Smartfony i tablety
Intensywne promieniowanie magnetyczne zakłóca funkcjonowanie kompasów w telefonach i nawigacjach GPS. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.
Ochrona dłoni
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zmiażdżenia, a nawet złamania kości. Stosuj solidne rękawice ochronne.
Łamliwość magnesów
Ryzyko skaleczenia. Magnesy mogą pęknąć przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Nadwrażliwość na metale
Wiedza medyczna potwierdza, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Ryzyko pożaru
Obróbka mechaniczna magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest niebezpieczny.
