MPL 25x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020137
GTIN/EAN: 5906301811435
Długość
25 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
46.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.39 kg / 190.25 N
Indukcja magnetyczna
361.04 mT / 3610 Gs
Powłoka
[NiCuNi] nikiel
20.29 ZŁ z VAT / szt. + cena za transport
16.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
lub skontaktuj się za pomocą
formularz kontaktowy
na stronie kontakt.
Udźwig i budowę magnesu wyliczysz u nas w
kalkulatorze masy magnetycznej.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Parametry techniczne - MPL 25x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020137 |
| GTIN/EAN | 5906301811435 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 46.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.39 kg / 190.25 N |
| Indukcja magnetyczna ~ ? | 361.04 mT / 3610 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - dane
Przedstawione informacje są wynik analizy matematycznej. Wyniki oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie odbiegać od wyników symulacji. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Udźwig statyczny prostopadły (siła vs odległość) - spadek mocy
MPL 25x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3610 Gs
361.0 mT
|
19.39 kg / 19390.0 g
190.2 N
|
miażdżący |
| 1 mm |
3392 Gs
339.2 mT
|
17.12 kg / 17117.7 g
167.9 N
|
miażdżący |
| 2 mm |
3156 Gs
315.6 mT
|
14.82 kg / 14822.5 g
145.4 N
|
miażdżący |
| 3 mm |
2913 Gs
291.3 mT
|
12.63 kg / 12631.8 g
123.9 N
|
miażdżący |
| 5 mm |
2436 Gs
243.6 mT
|
8.83 kg / 8827.9 g
86.6 N
|
mocny |
| 10 mm |
1464 Gs
146.4 mT
|
3.19 kg / 3191.5 g
31.3 N
|
mocny |
| 15 mm |
872 Gs
87.2 mT
|
1.13 kg / 1131.5 g
11.1 N
|
słaby uchwyt |
| 20 mm |
538 Gs
53.8 mT
|
0.43 kg / 430.4 g
4.2 N
|
słaby uchwyt |
| 30 mm |
234 Gs
23.4 mT
|
0.08 kg / 81.8 g
0.8 N
|
słaby uchwyt |
| 50 mm |
68 Gs
6.8 mT
|
0.01 kg / 6.9 g
0.1 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 25x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.88 kg / 3878.0 g
38.0 N
|
| 1 mm | Stal (~0.2) |
3.42 kg / 3424.0 g
33.6 N
|
| 2 mm | Stal (~0.2) |
2.96 kg / 2964.0 g
29.1 N
|
| 3 mm | Stal (~0.2) |
2.53 kg / 2526.0 g
24.8 N
|
| 5 mm | Stal (~0.2) |
1.77 kg / 1766.0 g
17.3 N
|
| 10 mm | Stal (~0.2) |
0.64 kg / 638.0 g
6.3 N
|
| 15 mm | Stal (~0.2) |
0.23 kg / 226.0 g
2.2 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 86.0 g
0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 16.0 g
0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - zachowanie na śliskim podłożu
MPL 25x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.82 kg / 5817.0 g
57.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.88 kg / 3878.0 g
38.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.94 kg / 1939.0 g
19.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.70 kg / 9695.0 g
95.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 25x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 969.5 g
9.5 N
|
| 1 mm |
|
2.42 kg / 2423.8 g
23.8 N
|
| 2 mm |
|
4.85 kg / 4847.5 g
47.6 N
|
| 5 mm |
|
12.12 kg / 12118.8 g
118.9 N
|
| 10 mm |
|
19.39 kg / 19390.0 g
190.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 25x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.39 kg / 19390.0 g
190.2 N
|
OK |
| 40 °C | -2.2% |
18.96 kg / 18963.4 g
186.0 N
|
OK |
| 60 °C | -4.4% |
18.54 kg / 18536.8 g
181.8 N
|
|
| 80 °C | -6.6% |
18.11 kg / 18110.3 g
177.7 N
|
|
| 100 °C | -28.8% |
13.81 kg / 13805.7 g
135.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 25x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
50.20 kg / 50204 g
492.5 N
5 073 Gs
|
N/A |
| 1 mm |
47.31 kg / 47311 g
464.1 N
7 008 Gs
|
42.58 kg / 42580 g
417.7 N
~0 Gs
|
| 2 mm |
44.32 kg / 44321 g
434.8 N
6 783 Gs
|
39.89 kg / 39888 g
391.3 N
~0 Gs
|
| 3 mm |
41.33 kg / 41330 g
405.5 N
6 550 Gs
|
37.20 kg / 37197 g
364.9 N
~0 Gs
|
| 5 mm |
35.49 kg / 35494 g
348.2 N
6 070 Gs
|
31.94 kg / 31945 g
313.4 N
~0 Gs
|
| 10 mm |
22.86 kg / 22857 g
224.2 N
4 871 Gs
|
20.57 kg / 20571 g
201.8 N
~0 Gs
|
| 20 mm |
8.26 kg / 8263 g
81.1 N
2 929 Gs
|
7.44 kg / 7437 g
73.0 N
~0 Gs
|
| 50 mm |
0.46 kg / 465 g
4.6 N
695 Gs
|
0.42 kg / 418 g
4.1 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 25x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 25x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.52 km/h
(6.26 m/s)
|
0.92 J | |
| 30 mm |
35.62 km/h
(9.89 m/s)
|
2.29 J | |
| 50 mm |
45.87 km/h
(12.74 m/s)
|
3.81 J | |
| 100 mm |
64.86 km/h
(18.02 m/s)
|
7.61 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 25x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 25x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 497 Mx | 235.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.39 kg | Standard |
| Woda (dno rzeki) |
22.20 kg
(+2.81 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% nominalnego udźwigu.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) wyraźnie ogranicza udźwig magnesu.
3. Spadek mocy w temperaturze
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – nawet po dekady utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Inne źródła magnetyzmu nie powodują ich szybkiego rozmagnesowania – posiadają wysoki współczynnik koercji.
- Warstwa ochronna (np. niklowa) zapewnia im atrakcyjny wygląd, co ma znaczenie estetyczne.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Wersje specjalistyczne funkcjonują w temperaturach sięgających 230°C, zachowując swoje parametry.
- Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i może odprysnąć. Ochrona w postaci obudowy jest kluczowa.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) należy używać modele z oznaczeniem [AH].
- Nie lubią wody – szybko rdzewieją. Jeśli planujesz montaż na dworze, najlepszą opcją są magnesy w plastikowej osłonie.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Lepiej wybrać gotowe uchwyty magnetyczne (magnes w obudowie).
- Zachowaj ostrożność – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Wyższa cena w porównaniu do tańszych zamienników to ich minus, szczególnie przy zakupach hurtowych.
Analiza siły trzymania
Wytrzymałość na oderwanie magnesu w warunkach idealnych – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, zapewniającej maksymalne skupienie pola
- o przekroju nie mniejszej niż 10 mm
- z powierzchnią idealnie równą
- bez żadnej szczeliny pomiędzy magnesem a stalą
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w warunkach ok. 20°C
Co wpływa na udźwig w praktyce
- Dystans (między magnesem a metalem), gdyż nawet mikroskopijna odległość (np. 0,5 mm) powoduje redukcję udźwigu nawet o 50% (dotyczy to także farby, rdzy czy zanieczyszczeń).
- Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły nominalnej).
- Masywność podłoża – za chuda stal nie przyjmuje całego pola, przez co część mocy jest tracona na drugą stronę.
- Materiał blachy – stal niskowęglowa daje najlepsze rezultaty. Stale stopowe zmniejszają przenikalność magnetyczną i siłę trzymania.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia siłę. Nierówny metal osłabiają chwyt.
- Temperatura pracy – magnesy neodymowe posiadają wrażliwość na temperaturę. W wyższych temperaturach tracą moc, a na mrozie zyskują na sile (do pewnej granicy).
Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet 75%. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Ostrzeżenia
Wpływ na zdrowie
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub poproś inną osobę pracę z magnesów.
Siła neodymu
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż jesteś w stanie przewidzieć.
Rozprysk materiału
Chroń oczy. Magnesy mogą eksplodować przy gwałtownym złączeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Karty i dyski
Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz urządzenia precyzyjne (implanty, protezy słuchu, czasomierze).
Niebezpieczeństwo przytrzaśnięcia
Uważaj na palce. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Nadwrażliwość na metale
Badania wskazują, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli Twoja skóra źle reaguje na metale, wystrzegaj się kontaktu skóry z metalem lub wybierz wersje w obudowie plastikowej.
Elektronika precyzyjna
Silne pole magnetyczne destabilizuje funkcjonowanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
To nie jest zabawka
Produkt przeznaczony dla dorosłych. Drobne magnesy mogą zostać połknięte, co prowadzi do martwicy tkanek. Trzymaj z dala od dzieci i zwierząt.
Maksymalna temperatura
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i udźwig.
Pył jest łatwopalny
Proszek powstający podczas cięcia magnesów jest wybuchowy. Zakaz wiercenia w magnesach bez odpowiedniego chłodzenia i wiedzy.
