MPL 25x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020137
GTIN/EAN: 5906301811435
Długość
25 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
46.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.39 kg / 190.25 N
Indukcja magnetyczna
361.04 mT / 3610 Gs
Powłoka
[NiCuNi] nikiel
20.29 ZŁ z VAT / szt. + cena za transport
16.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo pisz korzystając z
nasz formularz online
na stronie kontakt.
Parametry i wygląd magnesu neodymowego sprawdzisz dzięki naszemu
kalkulatorze siły.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Specyfikacja techniczna - MPL 25x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020137 |
| GTIN/EAN | 5906301811435 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 46.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.39 kg / 190.25 N |
| Indukcja magnetyczna ~ ? | 361.04 mT / 3610 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - dane
Przedstawione dane stanowią rezultat symulacji fizycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te wyliczenia jako punkt odniesienia podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (siła vs dystans) - spadek mocy
MPL 25x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3610 Gs
361.0 mT
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
niebezpieczny! |
| 1 mm |
3392 Gs
339.2 mT
|
17.12 kg / 37.74 lbs
17117.7 g / 167.9 N
|
niebezpieczny! |
| 2 mm |
3156 Gs
315.6 mT
|
14.82 kg / 32.68 lbs
14822.5 g / 145.4 N
|
niebezpieczny! |
| 3 mm |
2913 Gs
291.3 mT
|
12.63 kg / 27.85 lbs
12631.8 g / 123.9 N
|
niebezpieczny! |
| 5 mm |
2436 Gs
243.6 mT
|
8.83 kg / 19.46 lbs
8827.9 g / 86.6 N
|
uwaga |
| 10 mm |
1464 Gs
146.4 mT
|
3.19 kg / 7.04 lbs
3191.5 g / 31.3 N
|
uwaga |
| 15 mm |
872 Gs
87.2 mT
|
1.13 kg / 2.49 lbs
1131.5 g / 11.1 N
|
bezpieczny |
| 20 mm |
538 Gs
53.8 mT
|
0.43 kg / 0.95 lbs
430.4 g / 4.2 N
|
bezpieczny |
| 30 mm |
234 Gs
23.4 mT
|
0.08 kg / 0.18 lbs
81.8 g / 0.8 N
|
bezpieczny |
| 50 mm |
68 Gs
6.8 mT
|
0.01 kg / 0.02 lbs
6.9 g / 0.1 N
|
bezpieczny |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 25x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.88 kg / 8.55 lbs
3878.0 g / 38.0 N
|
| 1 mm | Stal (~0.2) |
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| 2 mm | Stal (~0.2) |
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| 3 mm | Stal (~0.2) |
2.53 kg / 5.57 lbs
2526.0 g / 24.8 N
|
| 5 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 10 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 15 mm | Stal (~0.2) |
0.23 kg / 0.50 lbs
226.0 g / 2.2 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 25x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.82 kg / 12.82 lbs
5817.0 g / 57.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.88 kg / 8.55 lbs
3878.0 g / 38.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.94 kg / 4.27 lbs
1939.0 g / 19.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.70 kg / 21.37 lbs
9695.0 g / 95.1 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 25x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.14 lbs
969.5 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.34 lbs
2423.8 g / 23.8 N
|
| 2 mm |
|
4.85 kg / 10.69 lbs
4847.5 g / 47.6 N
|
| 3 mm |
|
7.27 kg / 16.03 lbs
7271.3 g / 71.3 N
|
| 5 mm |
|
12.12 kg / 26.72 lbs
12118.8 g / 118.9 N
|
| 10 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
| 11 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
| 12 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 25x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
OK |
| 40 °C | -2.2% |
18.96 kg / 41.81 lbs
18963.4 g / 186.0 N
|
OK |
| 60 °C | -4.4% |
18.54 kg / 40.87 lbs
18536.8 g / 181.8 N
|
|
| 80 °C | -6.6% |
18.11 kg / 39.93 lbs
18110.3 g / 177.7 N
|
|
| 100 °C | -28.8% |
13.81 kg / 30.44 lbs
13805.7 g / 135.4 N
|
Tabela 6: Dwa magnesy (odpychanie) - zasięg pola
MPL 25x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.20 kg / 110.68 lbs
5 073 Gs
|
7.53 kg / 16.60 lbs
7531 g / 73.9 N
|
N/A |
| 1 mm |
47.31 kg / 104.30 lbs
7 008 Gs
|
7.10 kg / 15.65 lbs
7097 g / 69.6 N
|
42.58 kg / 93.87 lbs
~0 Gs
|
| 2 mm |
44.32 kg / 97.71 lbs
6 783 Gs
|
6.65 kg / 14.66 lbs
6648 g / 65.2 N
|
39.89 kg / 87.94 lbs
~0 Gs
|
| 3 mm |
41.33 kg / 91.12 lbs
6 550 Gs
|
6.20 kg / 13.67 lbs
6200 g / 60.8 N
|
37.20 kg / 82.01 lbs
~0 Gs
|
| 5 mm |
35.49 kg / 78.25 lbs
6 070 Gs
|
5.32 kg / 11.74 lbs
5324 g / 52.2 N
|
31.94 kg / 70.43 lbs
~0 Gs
|
| 10 mm |
22.86 kg / 50.39 lbs
4 871 Gs
|
3.43 kg / 7.56 lbs
3429 g / 33.6 N
|
20.57 kg / 45.35 lbs
~0 Gs
|
| 20 mm |
8.26 kg / 18.22 lbs
2 929 Gs
|
1.24 kg / 2.73 lbs
1240 g / 12.2 N
|
7.44 kg / 16.40 lbs
~0 Gs
|
| 50 mm |
0.46 kg / 1.02 lbs
695 Gs
|
0.07 kg / 0.15 lbs
70 g / 0.7 N
|
0.42 kg / 0.92 lbs
~0 Gs
|
| 60 mm |
0.21 kg / 0.47 lbs
469 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 70 mm |
0.10 kg / 0.23 lbs
329 Gs
|
0.02 kg / 0.03 lbs
16 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.12 lbs
239 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
178 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
136 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 25x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Immobilizer | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - skutki zderzenia
MPL 25x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.52 km/h
(6.26 m/s)
|
0.92 J | |
| 30 mm |
35.62 km/h
(9.89 m/s)
|
2.29 J | |
| 50 mm |
45.87 km/h
(12.74 m/s)
|
3.81 J | |
| 100 mm |
64.86 km/h
(18.02 m/s)
|
7.61 J |
Tabela 9: Trwałość powłoki antykorozyjnej
MPL 25x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 25x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 497 Mx | 235.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 25x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.39 kg | Standard |
| Woda (dno rzeki) |
22.20 kg
(+2.81 kg zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Pamiętaj: Na pionowej ścianie magnes zachowa zaledwie ~20-30% siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie redukuje siłę trzymania.
3. Wytrzymałość temperaturowa
*W klasie N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą nie więcej niż ~1% swojej mocy (pomiary wskazują na taką wartość).
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik odporności magnetycznej.
- Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, idealnych do wymagań klienta.
- Stanowią kluczowy element w technologiach przyszłości, zasilając układy napędowe, urządzenia medyczne czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Słabe strony
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – co się na to składa?
- przy użyciu zwory ze stali niskowęglowej, zapewniającej pełne nasycenie magnetyczne
- której wymiar poprzeczny to min. 10 mm
- charakteryzującej się równą strukturą
- w warunkach idealnego przylegania (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (na odrywanie, nie zsuwanie)
- przy temperaturze otoczenia pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Przerwa między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. okleiną lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość blachy – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj stali – stal niskowęglowa daje najlepsze rezultaty. Większa zawartość węgla obniżają przenikalność magnetyczną i udźwig.
- Jakość powierzchni – im gładsza i bardziej polerowana blacha, tym większa strefa kontaktu i silniejsze trzymanie. Nierówności tworzą dystans powietrzny.
- Temperatura – wzrost temperatury skutkuje osłabieniem indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano używając blachy o gładkiej powierzchni o właściwej grubości (min. 20 mm), przy działaniu siły prostopadłej, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet niewielka szczelina między magnesem, a blachą redukuje nośność.
BHP przy magnesach
Zagrożenie dla nawigacji
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów od telefonu, aby uniknąć awarii czujników.
Uczulenie na powłokę
Powszechnie wiadomo, że nikiel (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli masz uczulenie, wystrzegaj się bezpośredniego dotyku lub wybierz wersje w obudowie plastikowej.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów w warunkach domowych, gdyż grozi to zapłonem.
Zagrożenie fizyczne
Dbaj o palce. Dwa duże magnesy zderzą błyskawicznie z siłą kilkuset kilogramów, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Produkt nie dla dzieci
Koniecznie chroń magnesy przed najmłodszymi. Ryzyko zadławienia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić nośniki danych oraz delikatną elektronikę (rozruszniki serca, protezy słuchu, zegarki mechaniczne).
Ryzyko rozmagnesowania
Nie przegrzewaj. Magnesy neodymowe są nieodporne na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Ogromna siła
Bądź ostrożny. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często gwałtowniej niż zdążysz zareagować.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Niebezpieczeństwo dla rozruszników
Ostrzeżenie dla sercowców: Promieniowanie magnetyczne zakłóca urządzenia medyczne. Utrzymuj co najmniej 30 cm odstępu lub zleć komuś innemu pracę z magnesów.
