MPL 25x25x10 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020137
GTIN/EAN: 5906301811435
Długość
25 mm [±0,1 mm]
Szerokość
25 mm [±0,1 mm]
Wysokość
10 mm [±0,1 mm]
Waga
46.88 g
Kierunek magnesowania
↑ osiowy
Udźwig
19.39 kg / 190.25 N
Indukcja magnetyczna
361.04 mT / 3610 Gs
Powłoka
[NiCuNi] nikiel
20.29 ZŁ z VAT / szt. + cena za transport
16.50 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń już teraz
+48 22 499 98 98
alternatywnie skontaktuj się poprzez
formularz kontaktowy
przez naszą stronę.
Masę oraz formę elementów magnetycznych obliczysz w naszym
kalkulatorze masy magnetycznej.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
Szczegółowa specyfikacja MPL 25x25x10 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x25x10 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020137 |
| GTIN/EAN | 5906301811435 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 25 mm [±0,1 mm] |
| Wysokość | 10 mm [±0,1 mm] |
| Waga | 46.88 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 19.39 kg / 190.25 N |
| Indukcja magnetyczna ~ ? | 361.04 mT / 3610 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu neodymowego - dane
Poniższe informacje są rezultat symulacji matematycznej. Wartości zostały wyliczone na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą się różnić. Prosimy traktować te dane jako pomoc pomocniczą podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 25x25x10 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3610 Gs
361.0 mT
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
niebezpieczny! |
| 1 mm |
3392 Gs
339.2 mT
|
17.12 kg / 37.74 lbs
17117.7 g / 167.9 N
|
niebezpieczny! |
| 2 mm |
3156 Gs
315.6 mT
|
14.82 kg / 32.68 lbs
14822.5 g / 145.4 N
|
niebezpieczny! |
| 3 mm |
2913 Gs
291.3 mT
|
12.63 kg / 27.85 lbs
12631.8 g / 123.9 N
|
niebezpieczny! |
| 5 mm |
2436 Gs
243.6 mT
|
8.83 kg / 19.46 lbs
8827.9 g / 86.6 N
|
mocny |
| 10 mm |
1464 Gs
146.4 mT
|
3.19 kg / 7.04 lbs
3191.5 g / 31.3 N
|
mocny |
| 15 mm |
872 Gs
87.2 mT
|
1.13 kg / 2.49 lbs
1131.5 g / 11.1 N
|
niskie ryzyko |
| 20 mm |
538 Gs
53.8 mT
|
0.43 kg / 0.95 lbs
430.4 g / 4.2 N
|
niskie ryzyko |
| 30 mm |
234 Gs
23.4 mT
|
0.08 kg / 0.18 lbs
81.8 g / 0.8 N
|
niskie ryzyko |
| 50 mm |
68 Gs
6.8 mT
|
0.01 kg / 0.02 lbs
6.9 g / 0.1 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (ściana)
MPL 25x25x10 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.88 kg / 8.55 lbs
3878.0 g / 38.0 N
|
| 1 mm | Stal (~0.2) |
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| 2 mm | Stal (~0.2) |
2.96 kg / 6.53 lbs
2964.0 g / 29.1 N
|
| 3 mm | Stal (~0.2) |
2.53 kg / 5.57 lbs
2526.0 g / 24.8 N
|
| 5 mm | Stal (~0.2) |
1.77 kg / 3.89 lbs
1766.0 g / 17.3 N
|
| 10 mm | Stal (~0.2) |
0.64 kg / 1.41 lbs
638.0 g / 6.3 N
|
| 15 mm | Stal (~0.2) |
0.23 kg / 0.50 lbs
226.0 g / 2.2 N
|
| 20 mm | Stal (~0.2) |
0.09 kg / 0.19 lbs
86.0 g / 0.8 N
|
| 30 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
16.0 g / 0.2 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 25x25x10 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
5.82 kg / 12.82 lbs
5817.0 g / 57.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.88 kg / 8.55 lbs
3878.0 g / 38.0 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
1.94 kg / 4.27 lbs
1939.0 g / 19.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
9.70 kg / 21.37 lbs
9695.0 g / 95.1 N
|
Tabela 4: Grubość stali (nasycenie) - dobór blachy
MPL 25x25x10 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.97 kg / 2.14 lbs
969.5 g / 9.5 N
|
| 1 mm |
|
2.42 kg / 5.34 lbs
2423.8 g / 23.8 N
|
| 2 mm |
|
4.85 kg / 10.69 lbs
4847.5 g / 47.6 N
|
| 3 mm |
|
7.27 kg / 16.03 lbs
7271.3 g / 71.3 N
|
| 5 mm |
|
12.12 kg / 26.72 lbs
12118.8 g / 118.9 N
|
| 10 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
| 11 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
| 12 mm |
|
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - limit termiczny
MPL 25x25x10 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.39 kg / 42.75 lbs
19390.0 g / 190.2 N
|
OK |
| 40 °C | -2.2% |
18.96 kg / 41.81 lbs
18963.4 g / 186.0 N
|
OK |
| 60 °C | -4.4% |
18.54 kg / 40.87 lbs
18536.8 g / 181.8 N
|
|
| 80 °C | -6.6% |
18.11 kg / 39.93 lbs
18110.3 g / 177.7 N
|
|
| 100 °C | -28.8% |
13.81 kg / 30.44 lbs
13805.7 g / 135.4 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 25x25x10 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
50.20 kg / 110.68 lbs
5 073 Gs
|
7.53 kg / 16.60 lbs
7531 g / 73.9 N
|
N/A |
| 1 mm |
47.31 kg / 104.30 lbs
7 008 Gs
|
7.10 kg / 15.65 lbs
7097 g / 69.6 N
|
42.58 kg / 93.87 lbs
~0 Gs
|
| 2 mm |
44.32 kg / 97.71 lbs
6 783 Gs
|
6.65 kg / 14.66 lbs
6648 g / 65.2 N
|
39.89 kg / 87.94 lbs
~0 Gs
|
| 3 mm |
41.33 kg / 91.12 lbs
6 550 Gs
|
6.20 kg / 13.67 lbs
6200 g / 60.8 N
|
37.20 kg / 82.01 lbs
~0 Gs
|
| 5 mm |
35.49 kg / 78.25 lbs
6 070 Gs
|
5.32 kg / 11.74 lbs
5324 g / 52.2 N
|
31.94 kg / 70.43 lbs
~0 Gs
|
| 10 mm |
22.86 kg / 50.39 lbs
4 871 Gs
|
3.43 kg / 7.56 lbs
3429 g / 33.6 N
|
20.57 kg / 45.35 lbs
~0 Gs
|
| 20 mm |
8.26 kg / 18.22 lbs
2 929 Gs
|
1.24 kg / 2.73 lbs
1240 g / 12.2 N
|
7.44 kg / 16.40 lbs
~0 Gs
|
| 50 mm |
0.46 kg / 1.02 lbs
695 Gs
|
0.07 kg / 0.15 lbs
70 g / 0.7 N
|
0.42 kg / 0.92 lbs
~0 Gs
|
| 60 mm |
0.21 kg / 0.47 lbs
469 Gs
|
0.03 kg / 0.07 lbs
32 g / 0.3 N
|
0.19 kg / 0.42 lbs
~0 Gs
|
| 70 mm |
0.10 kg / 0.23 lbs
329 Gs
|
0.02 kg / 0.03 lbs
16 g / 0.2 N
|
0.09 kg / 0.21 lbs
~0 Gs
|
| 80 mm |
0.05 kg / 0.12 lbs
239 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 90 mm |
0.03 kg / 0.07 lbs
178 Gs
|
0.00 kg / 0.01 lbs
5 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
| 100 mm |
0.02 kg / 0.04 lbs
136 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (implanty) - ostrzeżenia
MPL 25x25x10 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 13.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 10.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 8.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 6.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 6.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 2.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 2.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - ostrzeżenie
MPL 25x25x10 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
22.52 km/h
(6.26 m/s)
|
0.92 J | |
| 30 mm |
35.62 km/h
(9.89 m/s)
|
2.29 J | |
| 50 mm |
45.87 km/h
(12.74 m/s)
|
3.81 J | |
| 100 mm |
64.86 km/h
(18.02 m/s)
|
7.61 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 25x25x10 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 25x25x10 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 23 497 Mx | 235.0 µWb |
| Współczynnik Pc | 0.46 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x25x10 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 19.39 kg | Standard |
| Woda (dno rzeki) |
22.20 kg
(+2.81 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma tylko ułamek siły oderwania.
2. Wpływ grubości blachy
*Zbyt cienki metal (np. blacha karoseryjna) znacząco ogranicza siłę trzymania.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.46
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej pierwotnej siły (pomiary wskazują na taką wartość).
- Pozostają niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w trudnych warunkach.
- Pokrycie materiałami takimi jak nikiel czy złoto nadaje im czysty i lśniący charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Wykazują imponującą wytrzymałość termiczną, co umożliwia ich użycie w warunkach do 230°C (dotyczy odpowiednich serii).
- Możliwość uzyskania złożonych kształtów sprawia, że są idealne do indywidualnych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w napędach, medycynie oraz systemach IT.
- Moc w skali mikro – ich niewielka objętość nie przeszkadza w generowaniu dużej siły przyciągania.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli wymagasz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Obróbka jest trudna – wykonanie gwintu w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to stan krytyczny. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Analiza siły trzymania
Optymalny udźwig magnesu neodymowego – co się na to składa?
- z wykorzystaniem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- o grubości wynoszącej minimum 10 mm
- charakteryzującej się brakiem chropowatości
- bez najmniejszej szczeliny pomiędzy magnesem a stalą
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- przy temperaturze otoczenia ok. 20 stopni Celsjusza
Kluczowe elementy wpływające na udźwig
- Dystans (pomiędzy magnesem a blachą), bowiem nawet mikroskopijna odległość (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także farby, rdzy czy brudu).
- Kąt odrywania – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy działaniu sił bocznych, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy jest tracona na drugą stronę.
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość podłoża – im równiejsza powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Chropowatość działają jak mikroszczeliny.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięć razy. Co więcej, nawet niewielka szczelina pomiędzy powierzchnią magnesu, a blachą obniża siłę trzymania.
Bezpieczna praca przy magnesach neodymowych
Niszczenie danych
Unikaj zbliżania magnesów do dokumentów, laptopa czy telewizora. Pole magnetyczne może nieodwracalnie zepsuć te urządzenia oraz skasować dane z kart.
Potężne pole
Przed użyciem, przeczytaj instrukcję. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Bądź przewidujący.
Nadwrażliwość na metale
Niektóre osoby posiada uczulenie na nikiel, którym powlekane są standardowo nasze produkty. Długotrwała ekspozycja może wywołać silną reakcję alergiczną. Wskazane jest noszenie rękawiczek ochronnych.
Pył jest łatwopalny
Zagrożenie pożarowe: Pył neodymowy jest skrajnie łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż grozi to zapłonem.
Podatność na pękanie
Spieki NdFeB to materiał ceramiczny, co oznacza, że są bardzo kruche. Gwałtowne złączenie dwóch magnesów wywoła ich pęknięcie na drobne kawałki.
Elektronika precyzyjna
Silne pole magnetyczne zakłóca działanie czujników w smartfonach i urządzeniach lokalizacyjnych. Trzymaj z dala magnesów do smartfona, aby uniknąć awarii czujników.
Zakaz zabawy
Silne magnesy nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Przegrzanie magnesu
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Niebezpieczeństwo dla rozruszników
Pacjenci z stymulatorem serca muszą utrzymać bezpieczną odległość od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Ochrona dłoni
Dbaj o palce. Dwa duże magnesy złączą się błyskawicznie z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
