MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020136
GTIN/EAN: 5906301811428
Długość
25 mm [±0,1 mm]
Szerokość
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.72 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.72 kg / 75.74 N
Indukcja magnetyczna
299.70 mT / 2997 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
lub daj znać korzystając z
formularz kontaktowy
na stronie kontaktowej.
Udźwig oraz budowę magnesu neodymowego testujesz dzięki naszemu
narzędziu online do obliczeń.
Zamów do 14:00, a wyślemy dziś!
Szczegółowa specyfikacja MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020136 |
| GTIN/EAN | 5906301811428 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.72 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.72 kg / 75.74 N |
| Indukcja magnetyczna ~ ? | 299.70 mT / 2997 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione dane stanowią wynik kalkulacji inżynierskiej. Wyniki bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako wstępny drogowskaz dla projektantów.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - charakterystyka
MPL 25x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
2996 Gs
299.6 mT
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
średnie ryzyko |
| 1 mm |
2705 Gs
270.5 mT
|
6.29 kg / 13.87 lbs
6292.6 g / 61.7 N
|
średnie ryzyko |
| 2 mm |
2384 Gs
238.4 mT
|
4.89 kg / 10.77 lbs
4886.6 g / 47.9 N
|
średnie ryzyko |
| 3 mm |
2067 Gs
206.7 mT
|
3.67 kg / 8.10 lbs
3674.4 g / 36.0 N
|
średnie ryzyko |
| 5 mm |
1517 Gs
151.7 mT
|
1.98 kg / 4.36 lbs
1979.6 g / 19.4 N
|
słaby uchwyt |
| 10 mm |
702 Gs
70.2 mT
|
0.42 kg / 0.93 lbs
424.1 g / 4.2 N
|
słaby uchwyt |
| 15 mm |
355 Gs
35.5 mT
|
0.11 kg / 0.24 lbs
108.6 g / 1.1 N
|
słaby uchwyt |
| 20 mm |
198 Gs
19.8 mT
|
0.03 kg / 0.07 lbs
33.6 g / 0.3 N
|
słaby uchwyt |
| 30 mm |
76 Gs
7.6 mT
|
0.01 kg / 0.01 lbs
5.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (ściana)
MPL 25x12.5x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| 1 mm | Stal (~0.2) |
1.26 kg / 2.77 lbs
1258.0 g / 12.3 N
|
| 2 mm | Stal (~0.2) |
0.98 kg / 2.16 lbs
978.0 g / 9.6 N
|
| 3 mm | Stal (~0.2) |
0.73 kg / 1.62 lbs
734.0 g / 7.2 N
|
| 5 mm | Stal (~0.2) |
0.40 kg / 0.87 lbs
396.0 g / 3.9 N
|
| 10 mm | Stal (~0.2) |
0.08 kg / 0.19 lbs
84.0 g / 0.8 N
|
| 15 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 20 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (poślizg) - udźwig wertykalny
MPL 25x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.32 kg / 5.11 lbs
2316.0 g / 22.7 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 25x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.25 lbs
1930.0 g / 18.9 N
|
| 2 mm |
|
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
| 3 mm |
|
5.79 kg / 12.76 lbs
5790.0 g / 56.8 N
|
| 5 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 10 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 11 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 12 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
Tabela 5: Wytrzymałość temperaturowa (stabilność) - próg odporności
MPL 25x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
OK |
| 40 °C | -2.2% |
7.55 kg / 16.65 lbs
7550.2 g / 74.1 N
|
OK |
| 60 °C | -4.4% |
7.38 kg / 16.27 lbs
7380.3 g / 72.4 N
|
|
| 80 °C | -6.6% |
7.21 kg / 15.90 lbs
7210.5 g / 70.7 N
|
|
| 100 °C | -28.8% |
5.50 kg / 12.12 lbs
5496.6 g / 53.9 N
|
Tabela 6: Dwa magnesy (odpychanie) - siły w układzie
MPL 25x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.29 kg / 38.13 lbs
4 511 Gs
|
2.59 kg / 5.72 lbs
2594 g / 25.4 N
|
N/A |
| 1 mm |
15.73 kg / 34.68 lbs
5 715 Gs
|
2.36 kg / 5.20 lbs
2360 g / 23.2 N
|
14.16 kg / 31.22 lbs
~0 Gs
|
| 2 mm |
14.10 kg / 31.08 lbs
5 410 Gs
|
2.11 kg / 4.66 lbs
2114 g / 20.7 N
|
12.69 kg / 27.97 lbs
~0 Gs
|
| 3 mm |
12.48 kg / 27.52 lbs
5 091 Gs
|
1.87 kg / 4.13 lbs
1872 g / 18.4 N
|
11.23 kg / 24.77 lbs
~0 Gs
|
| 5 mm |
9.52 kg / 20.99 lbs
4 446 Gs
|
1.43 kg / 3.15 lbs
1428 g / 14.0 N
|
8.57 kg / 18.89 lbs
~0 Gs
|
| 10 mm |
4.43 kg / 9.78 lbs
3 034 Gs
|
0.67 kg / 1.47 lbs
665 g / 6.5 N
|
3.99 kg / 8.80 lbs
~0 Gs
|
| 20 mm |
0.95 kg / 2.09 lbs
1 404 Gs
|
0.14 kg / 0.31 lbs
142 g / 1.4 N
|
0.85 kg / 1.88 lbs
~0 Gs
|
| 50 mm |
0.03 kg / 0.06 lbs
238 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.02 lbs
153 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.01 lbs
103 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.01 lbs
73 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
53 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
40 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 25x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 25x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
26.76 km/h
(7.43 m/s)
|
0.32 J | |
| 30 mm |
44.85 km/h
(12.46 m/s)
|
0.91 J | |
| 50 mm |
57.88 km/h
(16.08 m/s)
|
1.51 J | |
| 100 mm |
81.85 km/h
(22.74 m/s)
|
3.03 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 25x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Flux)
MPL 25x12.5x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 9 639 Mx | 96.4 µWb |
| Współczynnik Pc | 0.35 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.72 kg | Standard |
| Woda (dno rzeki) |
8.84 kg
(+1.12 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Uwaga: Na pionowej ścianie magnes zachowa jedynie ~20-30% nominalnego udźwigu.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) drastycznie osłabia udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Dane środowiskowe
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Wady oraz zalety neodymowych magnesów Nd2Fe14B.
Plusy
- Utrzymują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o niezauważalny 1%.
- Inne źródła magnetyzmu nie wpływają na ich szybkiego rozmagnesowania – posiadają dużą zdolność koercji.
- Dzięki powłoce (nikiel, złoto, Ag) mają estetyczny, błyszczący wygląd.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najwydajniejszymi w swojej klasie.
- Dzięki zaawansowanej technologii funkcjonują w temperaturach sięgających 230°C, zachowując swoje właściwości.
- Dają się łatwo formować do specyficznych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem silników, dysków i sprzętu medycznego.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie zapewniają wysoką skuteczność.
Minusy
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Uwaga na temperaturę – dla zwykłych magnesów limit to 80°C. W gorącym środowisku (do 230°C) sprawdzą się tylko modele z oznaczeniem [AH].
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje powlekane tworzywem do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Cena – są bardziej kosztowne niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Charakterystyka udźwigu
Najwyższa nośność magnesu – od czego zależy?
- na bloku wykonanej ze stali miękkiej, doskonale skupiającej pole magnetyczne
- której grubość sięga przynajmniej 10 mm
- z powierzchnią wolną od rys
- w warunkach braku dystansu (powierzchnia do powierzchni)
- podczas ciągnięcia w kierunku prostopadłym do powierzchni mocowania
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – występowanie ciała obcego (farba, brud, powietrze) przerywa obwód magnetyczny, co redukuje udźwig lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – należy wiedzieć, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość podłoża – dla pełnej efektywności, stal musi być wystarczająco masywna. Cienka blacha ogranicza udźwig (magnes „przebija” ją na wylot).
- Gatunek stali – najlepszym wyborem jest czysta stal żelazna. Żeliwo mogą mieć gorsze właściwości magnetyczne.
- Wykończenie powierzchni – pełny kontakt uzyskamy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, osłabiając magnes.
- Ciepło – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle udźwig jest mniejszy nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje siłę trzymania.
Środki ostrożności podczas pracy przy magnesach neodymowych
Urazy ciała
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może spowodować krwiaki, zmiażdżenia, a nawet otwarte złamania. Używaj grubych rękawic.
Nie dawać dzieciom
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga natychmiastowej operacji.
Uszkodzenia czujników
Pamiętaj: magnesy neodymowe generują pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od telefonu, tabletu i urządzeń GPS.
Podatność na pękanie
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Noś okulary.
Zagrożenie wybuchem pyłu
Obróbka mechaniczna magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Ostrzeżenie dla alergików
Badania wskazują, że nikiel (typowe wykończenie magnesów) jest silnym alergenem. Jeśli Twoja skóra źle reaguje na metale, unikaj trzymania magnesów gołą dłonią lub wybierz magnesy powlekane tworzywem.
Wrażliwość na ciepło
Standardowe magnesy neodymowe (klasa N) ulegają rozmagnesowaniu po osiągnięciu temperatury 80°C. Strata siły jest trwała i nieodwracalna.
Bezpieczny dystans
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Magnes może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Potężne pole
Przed użyciem, przeczytaj instrukcję. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Implanty kardiologiczne
Uwaga zdrowotna: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli posiadasz urządzenia wspomagające.
