MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020136
GTIN: 5906301811428
Długość
25 mm [±0,1 mm]
Szerokość
12.5 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
11.72 g
Kierunek magnesowania
↑ osiowy
Udźwig
9.49 kg / 93.11 N
Indukcja magnetyczna
0.40 mT / 4 Gs
Powłoka
[NiCuNi] nikiel
4.92 ZŁ z VAT / szt. + cena za transport
4.00 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?Szukasz zniżki?
Zadzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość korzystając z
formularz kontaktowy
przez naszą stronę.
Właściwości oraz wygląd elementów magnetycznych skontrolujesz dzięki naszemu
naszym kalkulatorze magnetycznym.
Zamówienia złożone przed 14:00 realizujemy jeszcze dziś!
MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020136 |
| GTIN | 5906301811428 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 12.5 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 11.72 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 9.49 kg / 93.11 N |
| Indukcja magnetyczna ~ ? | 0.40 mT / 4 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remanencja Br [Min. - Max.] ? | 1220-1260 | T |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [Min. - Max.] ? | 36-38 | BH max MGOe |
| gęstość energii [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Curie Temperatura TC | 312 - 380 | °C |
| Curie Temperatura TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅Cm |
| Siła wyginania | 250 | Mpa |
| Wytrzymałość na ściskanie | 1000~1100 | Mpa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 106 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska uchwytu - dane
Niniejsze dane stanowią wynik symulacji inżynierskiej. Wyniki oparte są na modelach dla klasy NdFeB. Realne parametry mogą nieznacznie różnić się od wartości teoretycznych. Traktuj te dane jako pomoc pomocniczą przy projektowaniu systemów.
MPL 25x12.5x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg) | Status ryzyka |
|---|---|---|---|
| 0 mm |
4045 Gs
404.5 mT
|
9.49 kg / 9490.0 g
93.1 N
|
uwaga |
| 1 mm |
3652 Gs
365.2 mT
|
7.74 kg / 7735.3 g
75.9 N
|
uwaga |
| 2 mm |
3218 Gs
321.8 mT
|
6.01 kg / 6006.9 g
58.9 N
|
uwaga |
| 5 mm |
1517 Gs
151.7 mT
|
1.34 kg / 1335.2 g
13.1 N
|
niskie ryzyko |
| 10 mm |
702 Gs
70.2 mT
|
0.29 kg / 286.0 g
2.8 N
|
niskie ryzyko |
| 15 mm |
355 Gs
35.5 mT
|
0.07 kg / 73.3 g
0.7 N
|
niskie ryzyko |
| 20 mm |
198 Gs
19.8 mT
|
0.02 kg / 22.7 g
0.2 N
|
niskie ryzyko |
| 30 mm |
76 Gs
7.6 mT
|
0.00 kg / 3.4 g
0.0 N
|
niskie ryzyko |
| 50 mm |
20 Gs
2.0 mT
|
0.00 kg / 0.2 g
0.0 N
|
niskie ryzyko |
MPL 25x12.5x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.85 kg / 2847.0 g
27.9 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.90 kg / 1898.0 g
18.6 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.95 kg / 949.0 g
9.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
4.75 kg / 4745.0 g
46.5 N
|
MPL 25x12.5x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.95 kg / 949.0 g
9.3 N
|
| 1 mm |
|
2.37 kg / 2372.5 g
23.3 N
|
| 2 mm |
|
4.75 kg / 4745.0 g
46.5 N
|
| 5 mm |
|
9.49 kg / 9490.0 g
93.1 N
|
| 10 mm |
|
9.49 kg / 9490.0 g
93.1 N
|
MPL 25x12.5x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
9.49 kg / 9490.0 g
93.1 N
|
OK |
| 40 °C | -2.2% |
9.28 kg / 9281.2 g
91.0 N
|
OK |
| 60 °C | -4.4% |
9.07 kg / 9072.4 g
89.0 N
|
OK |
| 80 °C | -6.6% |
8.86 kg / 8863.7 g
87.0 N
|
|
| 100 °C | -28.8% |
6.76 kg / 6756.9 g
66.3 N
|
MPL 25x12.5x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
14.24 kg / 14235.0 g
139.6 N
|
N/A |
| 2 mm |
9.02 kg / 9015.0 g
88.4 N
|
8.41 kg / 8414.0 g
82.5 N
|
| 5 mm |
2.01 kg / 2010.0 g
19.7 N
|
1.88 kg / 1876.0 g
18.4 N
|
| 10 mm |
0.43 kg / 435.0 g
4.3 N
|
0.41 kg / 406.0 g
4.0 N
|
| 20 mm |
0.03 kg / 30.0 g
0.3 N
|
0.03 kg / 28.0 g
0.3 N
|
| 50 mm |
0.00 kg / 0.0 g
0.0 N
|
0.00 kg / 0.0 g
0.0 N
|
MPL 25x12.5x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.5 cm |
| Czasomierz | 20 Gs (2.0 mT) | 5.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 4.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 4.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
MPL 25x12.5x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.23 km/h
(8.12 m/s)
|
0.39 J | |
| 30 mm |
49.72 km/h
(13.81 m/s)
|
1.12 J | |
| 50 mm |
64.17 km/h
(17.83 m/s)
|
1.86 J | |
| 100 mm |
90.75 km/h
(25.21 m/s)
|
3.72 J |
MPL 25x12.5x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
MPL 25x12.5x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 9.49 kg | Standard |
| Woda (dno rzeki) |
10.87 kg
(+1.38 kg Zysk z wyporności)
|
+14.5% |
Sprawdź inne produkty
Zalety i wady magnesów neodymowych NdFeB.
Poza niezwykłą mocą, magnesy typu NdFeB gwarantują wiele innych atutów::
- Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Inne źródła magnetyzmu nie wpływają na ich utraty mocy – posiadają dużą zdolność koercji.
- Łączą moc z estetyką – dzięki powłokom ich powierzchnia jest błyszcząca i prezentuje się elegancko.
- Oferują najwyższą indukcję magnetyczną bezpośrednio na powierzchni, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, pamięci masowych i sprzętu medycznego.
- Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Czego unikać? Wady i zagrożenia związane z neodymami:
- Ze względu na kruchość, trzeba się z nimi obchodzić delikatnie. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Wybierz wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – małe elementy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą zakłócać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Wytrzymałość na oderwanie magnesu w warunkach idealnych – co się na to składa?
Deklarowana siła magnesu dotyczy siły granicznej, zarejestrowanej w idealnych warunkach testowych, a mianowicie:
- na płycie wykonanej ze stali konstrukcyjnej, optymalnie przewodzącej pole magnetyczne
- o grubości nie mniejszej niż 10 mm
- charakteryzującej się gładkością
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
W rzeczywistych zastosowaniach, rzeczywisty udźwig wynika z kilku kluczowych aspektów, uszeregowanych od najbardziej istotnych:
- Szczelina – obecność ciała obcego (farba, taśma, powietrze) działa jak izolator, co obniża moc gwałtownie (nawet o 50% przy 0,5 mm).
- Wektor obciążenia – największą siłę uzyskujemy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po blasze jest standardowo wielokrotnie mniejsza (ok. 1/5 udźwigu).
- Grubość elementu – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Materiał blachy – stal niskowęglowa przyciąga najlepiej. Stale stopowe obniżają właściwości magnetyczne i siłę trzymania.
- Wykończenie powierzchni – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura tworzą poduszki powietrzne, redukując siłę.
- Temperatura – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
* Siłę trzymania mierzy się na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, natomiast przy próbie przesunięcia magnesu nośność jest mniejsza nawet pięć razy. Co więcej, nawet drobny odstęp między powierzchnią magnesu, a blachą zmniejsza nośność.
Środki ostrożności podczas pracy przy magnesach neodymowych
Nie wierć w magnesach
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Nośniki danych
Nie zbliżaj magnesów do portfela, komputera czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Zakłócenia GPS i telefonów
Uwaga: magnesy neodymowe wytwarzają pole, które mylą elektronikę precyzyjną. Zachowaj bezpieczny dystans od komórki, tabletu i nawigacji.
Implanty kardiologiczne
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zakłócić pracę urządzenia ratującego życie.
Potężne pole
Stosuj magnesy świadomie. Ich gigantyczny udźwig może zszokować nawet doświadczonych użytkowników. Zachowaj czujność i nie lekceważ ich siły.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy złączą się z ogromną prędkością z siłą wielu ton, niszcząc wszystko na swojej drodze. Bądź ostrożny!
Utrata mocy w cieple
Chroń przed wysoką temperaturą. Magnesy neodymowe są wrażliwe na ciepło. Jeśli potrzebujesz odporności powyżej 80°C, wybierz magnesy odporne na ciepło (H, SH, UH).
Niklowa powłoka a alergia
Część populacji posiada alergię kontaktową na pierwiastek nikiel, którym pokryta jest większość magnesy neodymowe. Dłuższy kontakt może powodować wysypkę. Zalecamy noszenie rękawic bezlateksowych.
Kruchość materiału
Uwaga na odpryski. Magnesy mogą eksplodować przy gwałtownym złączeniu, rozrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Produkt nie dla dzieci
Koniecznie zabezpiecz magnesy przed dostępem dzieci. Ryzyko zadławienia jest bardzo duże, a konsekwencje połączenia się magnesów wewnątrz organizmu są nieodwracalne.
Uwaga!
Potrzebujesz więcej danych? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
