Magnesy neodymowe: moc, której szukasz

Potrzebujesz silnego pola magnetycznego? Oferujemy kompleksowy asortyment magnesów płytkowych, walcowych i pierścieniowych. Są one idealne do użytku w domu, warsztatu oraz modelarstwa. Zobacz produkty dostępne od ręki.

zobacz cennik i wymiary

Uchwyty do eksploracji dna

Zacznij swoje hobby z wyławianiem skarbów! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i potężnej siły. Nierdzewna konstrukcja oraz mocne linki sprawdzą się w każdej wodzie.

znajdź zestaw dla siebie

Mocowania magnetyczne dla przemysłu

Profesjonalne rozwiązania do montażu bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy mocowaniu lamp, czujników oraz reklam.

zobacz dostępne gwinty

🚀 Ekspresowa realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy za 2 dni

MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020136

GTIN/EAN: 5906301811428

5.00

Długość

25 mm [±0,1 mm]

Szerokość

12.5 mm [±0,1 mm]

Wysokość

5 mm [±0,1 mm]

Waga

11.72 g

Kierunek magnesowania

↑ osiowy

Udźwig

7.72 kg / 75.74 N

Indukcja magnetyczna

299.70 mT / 2997 Gs

Powłoka

[NiCuNi] nikiel

4.92 z VAT / szt. + cena za transport

4.00 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
4.00 ZŁ
4.92 ZŁ
cena od 150 szt.
3.76 ZŁ
4.62 ZŁ
cena od 650 szt.
3.52 ZŁ
4.33 ZŁ
Chcesz się targować?

Zadzwoń już teraz +48 22 499 98 98 lub daj znać korzystając z formularz zgłoszeniowy na stronie kontakt.
Parametry i budowę magnesów zweryfikujesz u nas w kalkulatorze magnetycznym.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Specyfikacja produktu - MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020136
GTIN/EAN 5906301811428
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 25 mm [±0,1 mm]
Szerokość 12.5 mm [±0,1 mm]
Wysokość 5 mm [±0,1 mm]
Waga 11.72 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 7.72 kg / 75.74 N
Indukcja magnetyczna ~ ? 299.70 mT / 2997 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 25x12.5x5 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu neodymowego - raport

Niniejsze informacje są rezultat kalkulacji matematycznej. Wyniki bazują na algorytmach dla materiału Nd2Fe14B. Realne warunki mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Siła prostopadła statyczna (udźwig vs dystans) - charakterystyka
MPL 25x12.5x5 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 2996 Gs
299.6 mT
7.72 kg / 7720.0 g
75.7 N
średnie ryzyko
1 mm 2705 Gs
270.5 mT
6.29 kg / 6292.6 g
61.7 N
średnie ryzyko
2 mm 2384 Gs
238.4 mT
4.89 kg / 4886.6 g
47.9 N
średnie ryzyko
3 mm 2067 Gs
206.7 mT
3.67 kg / 3674.4 g
36.0 N
średnie ryzyko
5 mm 1517 Gs
151.7 mT
1.98 kg / 1979.6 g
19.4 N
niskie ryzyko
10 mm 702 Gs
70.2 mT
0.42 kg / 424.1 g
4.2 N
niskie ryzyko
15 mm 355 Gs
35.5 mT
0.11 kg / 108.6 g
1.1 N
niskie ryzyko
20 mm 198 Gs
19.8 mT
0.03 kg / 33.6 g
0.3 N
niskie ryzyko
30 mm 76 Gs
7.6 mT
0.01 kg / 5.0 g
0.0 N
niskie ryzyko
50 mm 20 Gs
2.0 mT
0.00 kg / 0.3 g
0.0 N
niskie ryzyko

Tabela 2: Siła równoległa zsuwania (ściana)
MPL 25x12.5x5 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 1.54 kg / 1544.0 g
15.1 N
1 mm Stal (~0.2) 1.26 kg / 1258.0 g
12.3 N
2 mm Stal (~0.2) 0.98 kg / 978.0 g
9.6 N
3 mm Stal (~0.2) 0.73 kg / 734.0 g
7.2 N
5 mm Stal (~0.2) 0.40 kg / 396.0 g
3.9 N
10 mm Stal (~0.2) 0.08 kg / 84.0 g
0.8 N
15 mm Stal (~0.2) 0.02 kg / 22.0 g
0.2 N
20 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
30 mm Stal (~0.2) 0.00 kg / 2.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 25x12.5x5 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
2.32 kg / 2316.0 g
22.7 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
1.54 kg / 1544.0 g
15.1 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.77 kg / 772.0 g
7.6 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
3.86 kg / 3860.0 g
37.9 N

Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 25x12.5x5 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.77 kg / 772.0 g
7.6 N
1 mm
25%
1.93 kg / 1930.0 g
18.9 N
2 mm
50%
3.86 kg / 3860.0 g
37.9 N
5 mm
100%
7.72 kg / 7720.0 g
75.7 N
10 mm
100%
7.72 kg / 7720.0 g
75.7 N

Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 25x12.5x5 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 7.72 kg / 7720.0 g
75.7 N
OK
40 °C -2.2% 7.55 kg / 7550.2 g
74.1 N
OK
60 °C -4.4% 7.38 kg / 7380.3 g
72.4 N
80 °C -6.6% 7.21 kg / 7210.5 g
70.7 N
100 °C -28.8% 5.50 kg / 5496.6 g
53.9 N

Tabela 6: Dwa magnesy (przyciąganie) - zasięg pola
MPL 25x12.5x5 / N38

Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 17.29 kg / 17293 g
169.6 N
4 511 Gs
N/A
1 mm 15.73 kg / 15732 g
154.3 N
5 715 Gs
14.16 kg / 14159 g
138.9 N
~0 Gs
2 mm 14.10 kg / 14096 g
138.3 N
5 410 Gs
12.69 kg / 12686 g
124.5 N
~0 Gs
3 mm 12.48 kg / 12483 g
122.5 N
5 091 Gs
11.23 kg / 11235 g
110.2 N
~0 Gs
5 mm 9.52 kg / 9522 g
93.4 N
4 446 Gs
8.57 kg / 8570 g
84.1 N
~0 Gs
10 mm 4.43 kg / 4434 g
43.5 N
3 034 Gs
3.99 kg / 3991 g
39.2 N
~0 Gs
20 mm 0.95 kg / 950 g
9.3 N
1 404 Gs
0.85 kg / 855 g
8.4 N
~0 Gs
50 mm 0.03 kg / 27 g
0.3 N
238 Gs
0.02 kg / 25 g
0.2 N
~0 Gs

Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 25x12.5x5 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 8.5 cm
Implant słuchowy 10 Gs (1.0 mT) 6.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 5.0 cm
Urządzenie mobilne 40 Gs (4.0 mT) 4.0 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 4.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.5 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.5 cm

Tabela 8: Zderzenia (energia kinetyczna) - skutki zderzenia
MPL 25x12.5x5 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 26.76 km/h
(7.43 m/s)
0.32 J
30 mm 44.85 km/h
(12.46 m/s)
0.91 J
50 mm 57.88 km/h
(16.08 m/s)
1.51 J
100 mm 81.85 km/h
(22.74 m/s)
3.03 J

Tabela 9: Specyfikacja ochrony powierzchni
MPL 25x12.5x5 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane konstrukcyjne (Flux)
MPL 25x12.5x5 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 9 639 Mx 96.4 µWb
Współczynnik Pc 0.35 Niski (Płaski)

Tabela 11: Praca w wodzie (Magnet Fishing)
MPL 25x12.5x5 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 7.72 kg Standard
Woda (dno rzeki) 8.84 kg
(+1.12 kg Zysk z wyporności)
+14.5%
Uwaga na korozję: Standardowy nikiel wymaga osuszenia po każdym kontakcie z wilgocią; brak konserwacji doprowadzi do powstania ognisk rdzy.
1. Siła zsuwająca

*Ważne: Na powierzchni pionowej magnes utrzyma jedynie ok. 20-30% siły prostopadłej.

2. Grubość podłoża

*Zbyt cienki metal (np. obudowa PC 0.5mm) wyraźnie osłabia udźwig magnesu.

3. Stabilność termiczna

*Dla materiału N38 krytyczny próg to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.35

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Specyfikacja materiałowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020136-2025
Przelicznik magnesów
Udźwig magnesu

Moc pola

Inne produkty

Komponent MPL 25x12.5x5 / N38 cechuje się niskim profilem oraz profesjonalną siłą przyciągania, dzięki czemu jest to rozwiązanie doskonałe do budowy separatorów i maszyn. Ten prostopadłościan o sile 75.74 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Trwała warstwa antykorozyjna zapewnia długą żywotność w suchym środowisku, chroniąc rdzeń przed utlenianiem.
Kluczem do sukcesu jest przesunięcie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Aby rozłączyć model MPL 25x12.5x5 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy uwagę, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Nigdy nie używaj metalowych narzędzi do podważania, gdyż kruchy materiał NdFeB może odprysnąć i uszkodzić oczy.
Stanowią kluczowy element w produkcji prądnic wiatrowych oraz systemów transportu bliskiego. Dzięki płaskiej powierzchni i dużej sile (ok. 7.72 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 25x12.5x5 / N38 najlepiej używać mocne kleje epoksydowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Pamiętaj, aby przed klejeniem zmatowić i przemyć powierzchnię magnesu, co znacząco zwiększy przyczepność kleju do niklowanej powłoki.
Standardowo model MPL 25x12.5x5 / N38 jest magnesowany osiowo (wymiar 5 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (25x12.5 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 25x12.5x5 mm, co przy wadze 11.72 g czyni go elementem o imponującej gęstości energii. Jest to blok magnetyczny o gabarytach 25x12.5x5 mm i masie własnej 11.72 g, gotowy do pracy w temperaturze do 80°C. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Wady i zalety magnesów z neodymu Nd2Fe14B.

Korzyści

Poza potężną mocą, nasze magnesy oferują wiele innych atutów::
  • Cechują się stabilnością – przez okres ok. 10 lat gubią maksymalnie ~1% swojej pierwotnej siły (wg danych).
  • Trudno je rozmagnesować, gdyż wykazują potężną odporność na pola rozmagnesowujące.
  • Powłoka ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
  • Oferują najwyższą indukcję magnetyczną w punkcie styku, co gwarantuje skuteczność.
  • Są przystosowane do pracy w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Możliwość uzyskania złożonych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
  • Występują wszędzie tam, gdzie liczy się precyzja: w napędach, rezonansach oraz systemach IT.
  • Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują silne pole.

Minusy

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Pamiętaj o ich kruchości – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
  • Ryzyko połknięcia – drobne magnesy są niebezpieczne dla dzieci. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.

Analiza siły trzymania

Maksymalna siła przyciągania magnesuco się na to składa?

Podany w tabeli udźwig jest rezultatem pomiaru przeprowadzonego w warunkach wzorcowych:
  • na podłożu wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
  • o przekroju nie mniejszej niż 10 mm
  • o wypolerowanej powierzchni kontaktu
  • bez żadnej szczeliny pomiędzy magnesem a stalą
  • przy pionowym wektorze siły (kąt 90 stopni)
  • w temperaturze pokojowej

Czynniki determinujące udźwig w warunkach realnych

W praktyce, faktyczna siła trzymania zależy od kilku kluczowych aspektów, uszeregowanych od najbardziej istotnych:
  • Szczelina między powierzchniami – nawet ułamek milimetra dystansu (spowodowany np. lakierem lub nierównością) zmniejsza efektywność magnesu, często o połowę przy zaledwie 0,5 mm.
  • Sposób obciążenia – parametr katalogowy dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły nominalnej).
  • Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Gatunek stali – najlepszym wyborem jest stal o wysokiej przenikalności. Stale nierdzewne mogą mieć gorsze właściwości magnetyczne.
  • Gładkość podłoża – im gładsza i bardziej polerowana powierzchnia, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
  • Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Przekroczenie temperatury granicznej może trwale uszkodzić magnes.

Siłę trzymania testowano na gładkiej blasze o grubości 20 mm, kiedy przyłożono siłę prostopadłą, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet minimalna przerwa pomiędzy magnesem, a blachą redukuje nośność.

Zasady BHP dla użytkowników magnesów
Unikaj kontaktu w przypadku alergii

Wiedza medyczna potwierdza, że powłoka niklowa (typowe wykończenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.

Elektronika precyzyjna

Intensywne promieniowanie magnetyczne destabilizuje działanie kompasów w smartfonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.

Implanty medyczne

Zagrożenie życia: Magnesy neodymowe mogą dezaktywować rozruszniki serca i defibrylatory. Nie zbliżaj się, jeśli masz wszczepione implanty elektroniczne.

To nie jest zabawka

Koniecznie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki połączenia się magnesów wewnątrz organizmu są nieodwracalne.

Urządzenia elektroniczne

Zagrożenie dla danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).

Ryzyko pęknięcia

Mimo metalicznego wyglądu, neodym jest kruchy i nie znosi udarów. Nie uderzaj, gdyż magnes może się rozpaść na drobiny.

Zagrożenie zapłonem

Proszek generowany podczas szlifowania magnesów jest samozapalny. Nie wierć w magnesach w warunkach domowych.

Potężne pole

Stosuj magnesy odpowiedzialnie. Ich gigantyczny udźwig może zszokować nawet profesjonalistów. Bądź skupiony i respektuj ich siły.

Ochrona dłoni

Bloki magnetyczne mogą połamać palce w ułamku sekundy. Nigdy wkładaj dłoni pomiędzy dwa silne magnesy.

Utrata mocy w cieple

Typowe magnesy neodymowe (klasa N) tracą moc po przekroczeniu temperatury 80°C. Uszkodzenie jest permanentne.

Ważne! Szukasz szczegółów? Przeczytaj nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98