MPL 25x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020135
GTIN/EAN: 5906301811411
Długość
25 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
9.38 g
Kierunek magnesowania
↑ osiowy
Udźwig
7.49 kg / 73.45 N
Indukcja magnetyczna
337.05 mT / 3371 Gs
Powłoka
[NiCuNi] nikiel
4.66 ZŁ z VAT / szt. + cena za transport
3.79 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
albo daj znać korzystając z
formularz zapytania
przez naszą stronę.
Siłę a także formę magnesów neodymowych zweryfikujesz dzięki naszemu
kalkulatorze siły.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Specyfikacja produktu - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 25x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020135 |
| GTIN/EAN | 5906301811411 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 25 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 9.38 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 7.49 kg / 73.45 N |
| Indukcja magnetyczna ~ ? | 337.05 mT / 3371 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Analiza fizyczna magnesu neodymowego - dane
Poniższe informacje są bezpośredni efekt symulacji fizycznej. Wartości bazują na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie się różnić. Traktuj te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - spadek mocy
MPL 25x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3369 Gs
336.9 mT
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
średnie ryzyko |
| 1 mm |
2932 Gs
293.2 mT
|
5.67 kg / 12.51 lbs
5673.2 g / 55.7 N
|
średnie ryzyko |
| 2 mm |
2479 Gs
247.9 mT
|
4.06 kg / 8.94 lbs
4056.9 g / 39.8 N
|
średnie ryzyko |
| 3 mm |
2065 Gs
206.5 mT
|
2.81 kg / 6.21 lbs
2814.7 g / 27.6 N
|
średnie ryzyko |
| 5 mm |
1419 Gs
141.9 mT
|
1.33 kg / 2.93 lbs
1328.6 g / 13.0 N
|
słaby uchwyt |
| 10 mm |
603 Gs
60.3 mT
|
0.24 kg / 0.53 lbs
240.3 g / 2.4 N
|
słaby uchwyt |
| 15 mm |
296 Gs
29.6 mT
|
0.06 kg / 0.13 lbs
57.8 g / 0.6 N
|
słaby uchwyt |
| 20 mm |
162 Gs
16.2 mT
|
0.02 kg / 0.04 lbs
17.4 g / 0.2 N
|
słaby uchwyt |
| 30 mm |
62 Gs
6.2 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
16 Gs
1.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła obsunięcia (pion)
MPL 25x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| 1 mm | Stal (~0.2) |
1.13 kg / 2.50 lbs
1134.0 g / 11.1 N
|
| 2 mm | Stal (~0.2) |
0.81 kg / 1.79 lbs
812.0 g / 8.0 N
|
| 3 mm | Stal (~0.2) |
0.56 kg / 1.24 lbs
562.0 g / 5.5 N
|
| 5 mm | Stal (~0.2) |
0.27 kg / 0.59 lbs
266.0 g / 2.6 N
|
| 10 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 25x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
2.25 kg / 4.95 lbs
2247.0 g / 22.0 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.50 kg / 3.30 lbs
1498.0 g / 14.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.75 kg / 1.65 lbs
749.0 g / 7.3 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.75 kg / 8.26 lbs
3745.0 g / 36.7 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - straty mocy
MPL 25x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.75 kg / 1.65 lbs
749.0 g / 7.3 N
|
| 1 mm |
|
1.87 kg / 4.13 lbs
1872.5 g / 18.4 N
|
| 2 mm |
|
3.75 kg / 8.26 lbs
3745.0 g / 36.7 N
|
| 3 mm |
|
5.62 kg / 12.38 lbs
5617.5 g / 55.1 N
|
| 5 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 10 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 11 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
| 12 mm |
|
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 25x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.49 kg / 16.51 lbs
7490.0 g / 73.5 N
|
OK |
| 40 °C | -2.2% |
7.33 kg / 16.15 lbs
7325.2 g / 71.9 N
|
OK |
| 60 °C | -4.4% |
7.16 kg / 15.79 lbs
7160.4 g / 70.2 N
|
|
| 80 °C | -6.6% |
7.00 kg / 15.42 lbs
6995.7 g / 68.6 N
|
|
| 100 °C | -28.8% |
5.33 kg / 11.76 lbs
5332.9 g / 52.3 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 25x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła zsuwania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
17.49 kg / 38.57 lbs
4 785 Gs
|
2.62 kg / 5.78 lbs
2624 g / 25.7 N
|
N/A |
| 1 mm |
15.37 kg / 33.89 lbs
6 316 Gs
|
2.31 kg / 5.08 lbs
2306 g / 22.6 N
|
13.84 kg / 30.50 lbs
~0 Gs
|
| 2 mm |
13.25 kg / 29.21 lbs
5 864 Gs
|
1.99 kg / 4.38 lbs
1987 g / 19.5 N
|
11.92 kg / 26.29 lbs
~0 Gs
|
| 3 mm |
11.26 kg / 24.83 lbs
5 407 Gs
|
1.69 kg / 3.72 lbs
1690 g / 16.6 N
|
10.14 kg / 22.35 lbs
~0 Gs
|
| 5 mm |
7.91 kg / 17.44 lbs
4 531 Gs
|
1.19 kg / 2.62 lbs
1187 g / 11.6 N
|
7.12 kg / 15.70 lbs
~0 Gs
|
| 10 mm |
3.10 kg / 6.84 lbs
2 838 Gs
|
0.47 kg / 1.03 lbs
465 g / 4.6 N
|
2.79 kg / 6.16 lbs
~0 Gs
|
| 20 mm |
0.56 kg / 1.24 lbs
1 207 Gs
|
0.08 kg / 0.19 lbs
84 g / 0.8 N
|
0.51 kg / 1.11 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.03 lbs
194 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 60 mm |
0.01 kg / 0.01 lbs
124 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.01 lbs
84 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
59 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
43 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
32 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 25x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 8.0 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 5.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 4.0 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.5 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 25x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.06 km/h
(8.07 m/s)
|
0.31 J | |
| 30 mm |
49.37 km/h
(13.71 m/s)
|
0.88 J | |
| 50 mm |
63.73 km/h
(17.70 m/s)
|
1.47 J | |
| 100 mm |
90.12 km/h
(25.03 m/s)
|
2.94 J |
Tabela 9: Odporność na korozję
MPL 25x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 25x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 8 245 Mx | 82.5 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 25x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 7.49 kg | Standard |
| Woda (dno rzeki) |
8.58 kg
(+1.09 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na pionowej ścianie magnes utrzyma jedynie ~20-30% siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Wytrzymałość temperaturowa
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety i wady neodymowych magnesów Nd2Fe14B.
Plusy
- Zachowują swoje właściwości przez lata – szacuje się, że po dekadzie słabną o symboliczny 1%.
- Są niewrażliwe na zewnętrzne zakłócenia, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co ma znaczenie estetyczne.
- Wyróżniają się bardzo wysoką gęstością pola na powierzchni, co zapewnia mocne przyciąganie z dużą mocą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Elastyczność kształtowania – można je produkować w rozmaitych formach, dopasowanych do konkretnego projektu.
- Stanowią kluczowy element w technologiach przyszłości, zasilając silniki, sprzęt szpitalny czy elektronikę użytkową.
- Doskonała relacja wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na kruchość, wymagają ostrożności. Gwałtowne złączenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Są podatne na rdzewienie w mokrym otoczeniu. Na zewnątrz konieczne jest użycie magnesów wodoszczelnych (np. w gumie).
- Obróbka jest trudna – wiercenie otworów w samym magnesie jest ryzykowne. Zalecamy gotowe uchwyty magnetyczne (magnes w obudowie).
- Ryzyko połknięcia – drobne magnesy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy planowaniu kosztów.
Parametry udźwigu
Optymalny udźwig magnesu neodymowego – co się na to składa?
- na bloku wykonanej ze stali konstrukcyjnej, doskonale skupiającej strumień magnetyczny
- posiadającej masywność minimum 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się równą strukturą
- w warunkach braku dystansu (powierzchnia do powierzchni)
- dla siły przyłożonej pod kątem prostym (w osi magnesu)
- w temp. ok. 20°C
Kluczowe elementy wpływające na udźwig
- Szczelina – występowanie ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża moc lawinowo (nawet o 50% przy 0,5 mm).
- Kierunek siły – parametr katalogowy dotyczy odrywania w pionie. Przy ześlizgiwaniu, magnes wykazuje znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być odpowiednio gruba. Blacha "papierowa" ogranicza udźwig (magnes „przebija” ją na wylot).
- Typ metalu – nie każda stal przyciąga się identycznie. Dodatki stopowe osłabiają efekt przyciągania.
- Jakość powierzchni – im równiejsza blacha, tym lepsze przyleganie i silniejsze trzymanie. Nierówności działają jak mikroszczeliny.
- Temperatura pracy – spieki NdFeB posiadają wrażliwość na temperaturę. Gdy jest gorąco tracą moc, a w niskich zyskują na sile (do pewnej granicy).
Udźwig określano używając wypolerowanej blachy o właściwej grubości (min. 20 mm), przy prostopadłym działaniu siły odrywającej, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 5 razy. Co więcej, nawet niewielka szczelina między magnesem, a blachą redukuje udźwig.
Zasady BHP dla użytkowników magnesów
Kruchość materiału
Chroń oczy. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, wyrzucając ostre odłamki w powietrze. Zalecamy okulary ochronne.
Produkt nie dla dzieci
Te produkty magnetyczne nie są przeznaczone dla dzieci. Inhalacja kilku magnesów może doprowadzić do ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Przegrzanie magnesu
Nie przegrzewaj. Magnesy neodymowe są wrażliwe na ciepło. Jeśli wymagasz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Nie zbliżaj do komputera
Nie zbliżaj magnesów do portfela, laptopa czy telewizora. Pole magnetyczne może zniszczyć te urządzenia oraz skasować dane z kart.
Ryzyko uczulenia
Niektóre osoby posiada nadwrażliwość na nikiel, którym pokryta jest większość magnesy neodymowe. Częste dotykanie może powodować wysypkę. Rekomendujemy noszenie rękawic bezlateksowych.
Zasady obsługi
Postępuj ostrożnie. Magnesy neodymowe przyciągają z dużej odległości i zwierają z impetem, często szybciej niż zdążysz zareagować.
Samozapłon
Uwaga na ogień: Pył neodymowy jest wysoce łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż grozi to zapłonem.
Urazy ciała
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą kilkuset kilogramów, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Uwaga medyczna
Osoby z rozrusznikiem serca muszą zachować duży odstęp od magnesów. Silny magnes może zatrzymać pracę urządzenia ratującego życie.
Zakłócenia GPS i telefonów
Ważna informacja: magnesy neodymowe wytwarzają pole, które mylą systemy nawigacji. Utrzymuj bezpieczny dystans od komórki, tabletu i urządzeń GPS.
