MPL 20x8x4 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020133
GTIN/EAN: 5906301811398
Długość
20 mm [±0,1 mm]
Szerokość
8 mm [±0,1 mm]
Wysokość
4 mm [±0,1 mm]
Waga
4.8 g
Kierunek magnesowania
↑ osiowy
Udźwig
4.79 kg / 46.98 N
Indukcja magnetyczna
336.99 mT / 3370 Gs
Powłoka
[NiCuNi] nikiel
3.67 ZŁ z VAT / szt. + cena za transport
2.98 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo zostaw wiadomość poprzez
formularz kontaktowy
na stronie kontakt.
Masę i wygląd magnesu zweryfikujesz dzięki naszemu
kalkulatorze masy magnetycznej.
Zamów do 14:00, a wyślemy dziś!
Dane - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x8x4 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020133 |
| GTIN/EAN | 5906301811398 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 8 mm [±0,1 mm] |
| Wysokość | 4 mm [±0,1 mm] |
| Waga | 4.8 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 4.79 kg / 46.98 N |
| Indukcja magnetyczna ~ ? | 336.99 mT / 3370 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Przedstawione informacje są rezultat analizy matematycznej. Wartości bazują na algorytmach dla klasy Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Traktuj te dane jako punkt odniesienia podczas planowania montażu.
Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - spadek mocy
MPL 20x8x4 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3368 Gs
336.8 mT
|
4.79 kg / 4790.0 g
47.0 N
|
średnie ryzyko |
| 1 mm |
2818 Gs
281.8 mT
|
3.35 kg / 3352.3 g
32.9 N
|
średnie ryzyko |
| 2 mm |
2266 Gs
226.6 mT
|
2.17 kg / 2167.6 g
21.3 N
|
średnie ryzyko |
| 3 mm |
1794 Gs
179.4 mT
|
1.36 kg / 1358.6 g
13.3 N
|
niskie ryzyko |
| 5 mm |
1130 Gs
113.0 mT
|
0.54 kg / 538.9 g
5.3 N
|
niskie ryzyko |
| 10 mm |
416 Gs
41.6 mT
|
0.07 kg / 73.0 g
0.7 N
|
niskie ryzyko |
| 15 mm |
187 Gs
18.7 mT
|
0.01 kg / 14.7 g
0.1 N
|
niskie ryzyko |
| 20 mm |
97 Gs
9.7 mT
|
0.00 kg / 4.0 g
0.0 N
|
niskie ryzyko |
| 30 mm |
35 Gs
3.5 mT
|
0.00 kg / 0.5 g
0.0 N
|
niskie ryzyko |
| 50 mm |
9 Gs
0.9 mT
|
0.00 kg / 0.0 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 20x8x4 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.96 kg / 958.0 g
9.4 N
|
| 1 mm | Stal (~0.2) |
0.67 kg / 670.0 g
6.6 N
|
| 2 mm | Stal (~0.2) |
0.43 kg / 434.0 g
4.3 N
|
| 3 mm | Stal (~0.2) |
0.27 kg / 272.0 g
2.7 N
|
| 5 mm | Stal (~0.2) |
0.11 kg / 108.0 g
1.1 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 14.0 g
0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - zachowanie na śliskim podłożu
MPL 20x8x4 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.44 kg / 1437.0 g
14.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.96 kg / 958.0 g
9.4 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.48 kg / 479.0 g
4.7 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
2.40 kg / 2395.0 g
23.5 N
|
Tabela 4: Grubość stali (nasycenie) - straty mocy
MPL 20x8x4 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.48 kg / 479.0 g
4.7 N
|
| 1 mm |
|
1.20 kg / 1197.5 g
11.7 N
|
| 2 mm |
|
2.40 kg / 2395.0 g
23.5 N
|
| 5 mm |
|
4.79 kg / 4790.0 g
47.0 N
|
| 10 mm |
|
4.79 kg / 4790.0 g
47.0 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 20x8x4 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
4.79 kg / 4790.0 g
47.0 N
|
OK |
| 40 °C | -2.2% |
4.68 kg / 4684.6 g
46.0 N
|
OK |
| 60 °C | -4.4% |
4.58 kg / 4579.2 g
44.9 N
|
|
| 80 °C | -6.6% |
4.47 kg / 4473.9 g
43.9 N
|
|
| 100 °C | -28.8% |
3.41 kg / 3410.5 g
33.5 N
|
Tabela 6: Interakcja magnes-magnes (przyciąganie) - siły w układzie
MPL 20x8x4 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
11.19 kg / 11189 g
109.8 N
4 784 Gs
|
N/A |
| 1 mm |
9.49 kg / 9494 g
93.1 N
6 205 Gs
|
8.54 kg / 8544 g
83.8 N
~0 Gs
|
| 2 mm |
7.83 kg / 7830 g
76.8 N
5 635 Gs
|
7.05 kg / 7047 g
69.1 N
~0 Gs
|
| 3 mm |
6.34 kg / 6337 g
62.2 N
5 069 Gs
|
5.70 kg / 5703 g
55.9 N
~0 Gs
|
| 5 mm |
4.02 kg / 4015 g
39.4 N
4 035 Gs
|
3.61 kg / 3614 g
35.4 N
~0 Gs
|
| 10 mm |
1.26 kg / 1259 g
12.3 N
2 259 Gs
|
1.13 kg / 1133 g
11.1 N
~0 Gs
|
| 20 mm |
0.17 kg / 171 g
1.7 N
832 Gs
|
0.15 kg / 154 g
1.5 N
~0 Gs
|
| 50 mm |
0.00 kg / 3 g
0.0 N
112 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - środki ostrożności
MPL 20x8x4 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 6.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 5.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.0 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.0 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (ryzyko pęknięcia) - ostrzeżenie
MPL 20x8x4 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
32.16 km/h
(8.93 m/s)
|
0.19 J | |
| 30 mm |
55.18 km/h
(15.33 m/s)
|
0.56 J | |
| 50 mm |
71.24 km/h
(19.79 m/s)
|
0.94 J | |
| 100 mm |
100.75 km/h
(27.99 m/s)
|
1.88 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x8x4 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Strumień)
MPL 20x8x4 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 5 277 Mx | 52.8 µWb |
| Współczynnik Pc | 0.38 | Niski (Płaski) |
Tabela 11: Hydrostatyka i wyporność
MPL 20x8x4 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 4.79 kg | Standard |
| Woda (dno rzeki) |
5.48 kg
(+0.69 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na powierzchni pionowej magnes zachowa zaledwie ułamek siły prostopadłej.
2. Efektywność, a grubość stali
*Cienka blacha (np. obudowa PC 0.5mm) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.38
Powyższy wykres prezentuje charakterystykę magnetyczną materiału w drugim kwadrancie pętli histerezy. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Korzyści
- Długowieczność to ich atut – po upływie dekady spadek siły magnetycznej wynosi zaledwie ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich kluczową cechą.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są idealne do nietypowych zastosowań.
- Występują wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz systemach IT.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Ograniczenia
- Delikatność mechaniczna to ich mankament. Mogą pęknąć przy zderzeniu, dlatego zalecamy obudowy lub uchwyty.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
- Produkt niebezpieczny po połknięciu. Bezwzględnie chronić przed dziećmi. Wewnątrz ciała magnesy mogą się połączyć, powodując poważne urazy.
- Wysoki koszt zakupu w porównaniu do tańszych zamienników to ich minus, szczególnie przy dużych ilościach.
Parametry udźwigu
Maksymalny udźwig magnesu – od czego zależy?
- przy użyciu zwory ze specjalnej stali pomiarowej, zapewniającej pełne nasycenie magnetyczne
- posiadającej grubość min. 10 mm dla pełnego zamknięcia strumienia
- charakteryzującej się gładkością
- bez najmniejszej przerwy powietrznej pomiędzy magnesem a stalą
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w neutralnych warunkach termicznych
Kluczowe elementy wpływające na udźwig
- Dystans – obecność ciała obcego (rdza, brud, powietrze) działa jak izolator, co redukuje udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, udźwig spada drastycznie, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Blacha "papierowa" limituje udźwig (magnes „przebija” ją na wylot).
- Rodzaj materiału – najlepszym wyborem jest stal o wysokiej przenikalności. Stale hartowane mogą przyciągać słabiej.
- Stan powierzchni – powierzchnie gładkie gwarantują idealne doleganie, co zwiększa siłę. Nierówny metal zmniejszają efektywność.
- Temperatura – podgrzanie magnesu powoduje tymczasowy spadek siły. Należy pamiętać o maksymalną temperaturę pracy dla danego modelu.
Udźwig wyznaczano stosując gładkiej blachy o właściwej grubości (min. 20 mm), przy siłach działających pionowo, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięć razy. Ponadto, nawet minimalna przerwa między magnesem, a blachą zmniejsza siłę trzymania.
Zasady bezpieczeństwa pracy z magnesami neodymowymi
Ryzyko uczulenia
Powszechnie wiadomo, że powłoka niklowa (standardowe zabezpieczenie magnesów) jest częstą przyczyną uczuleń. Jeśli jesteś alergikiem, wystrzegaj się trzymania magnesów gołą dłonią lub zakup magnesy powlekane tworzywem.
Przegrzanie magnesu
Unikaj gorąca. Magnesy neodymowe są wrażliwe na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i nawigacjach GPS. Zachowaj odstęp magnesów do smartfona, aby nie uszkodzić czujników.
Bezpieczny dystans
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą zdegradować karty bankomatowe oraz urządzenia precyzyjne (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Ostrożność wymagana
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Zagrożenie dla najmłodszych
Bezwzględnie zabezpiecz magnesy przed dostępem dzieci. Niebezpieczeństwo połknięcia jest bardzo duże, a skutki zwarcia magnesów wewnątrz organizmu są tragiczne.
Siła zgniatająca
Silne magnesy mogą zmiażdżyć palce błyskawicznie. Absolutnie nie umieszczaj dłoni między dwa silne magnesy.
Wpływ na zdrowie
Pacjenci z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Silny magnes może rozregulować pracę urządzenia ratującego życie.
Ochrona oczu
Choć wyglądają jak stal, neodym jest delikatny i nie znosi udarów. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Obróbka mechaniczna
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny reaguje gwałtownie z tlenem i jest trudny do gaszenia.
