MPL 20x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020128
GTIN/EAN: 5906301811343
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.15 kg / 60.31 N
Indukcja magnetyczna
349.47 mT / 3495 Gs
Powłoka
[NiCuNi] nikiel
4.54 ZŁ z VAT / szt. + cena za transport
3.69 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 22 499 98 98
lub daj znać korzystając z
nasz formularz online
przez naszą stronę.
Parametry oraz budowę magnesu sprawdzisz u nas w
modułowym kalkulatorze.
Realizacja tego samego dnia przy zamówieniu do 14:00.
Szczegółowa specyfikacja MPL 20x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020128 |
| GTIN/EAN | 5906301811343 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.15 kg / 60.31 N |
| Indukcja magnetyczna ~ ? | 349.47 mT / 3495 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - parametry techniczne
Poniższe wartości są wynik kalkulacji inżynierskiej. Wartości oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie odbiegać od wyników symulacji. Traktuj te dane jako punkt odniesienia dla projektantów.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs odległość) - spadek mocy
MPL 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3493 Gs
349.3 mT
|
6.15 kg / 6150.0 g
60.3 N
|
uwaga |
| 1 mm |
3035 Gs
303.5 mT
|
4.64 kg / 4641.8 g
45.5 N
|
uwaga |
| 2 mm |
2558 Gs
255.8 mT
|
3.30 kg / 3298.0 g
32.4 N
|
uwaga |
| 3 mm |
2120 Gs
212.0 mT
|
2.26 kg / 2264.8 g
22.2 N
|
uwaga |
| 5 mm |
1433 Gs
143.3 mT
|
1.03 kg / 1034.5 g
10.1 N
|
słaby uchwyt |
| 10 mm |
574 Gs
57.4 mT
|
0.17 kg / 166.1 g
1.6 N
|
słaby uchwyt |
| 15 mm |
267 Gs
26.7 mT
|
0.04 kg / 35.9 g
0.4 N
|
słaby uchwyt |
| 20 mm |
141 Gs
14.1 mT
|
0.01 kg / 10.1 g
0.1 N
|
słaby uchwyt |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 1.4 g
0.0 N
|
słaby uchwyt |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa zsuwania (pion)
MPL 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.23 kg / 1230.0 g
12.1 N
|
| 1 mm | Stal (~0.2) |
0.93 kg / 928.0 g
9.1 N
|
| 2 mm | Stal (~0.2) |
0.66 kg / 660.0 g
6.5 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 452.0 g
4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.85 kg / 1845.0 g
18.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.23 kg / 1230.0 g
12.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 615.0 g
6.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.08 kg / 3075.0 g
30.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 615.0 g
6.0 N
|
| 1 mm |
|
1.54 kg / 1537.5 g
15.1 N
|
| 2 mm |
|
3.08 kg / 3075.0 g
30.2 N
|
| 5 mm |
|
6.15 kg / 6150.0 g
60.3 N
|
| 10 mm |
|
6.15 kg / 6150.0 g
60.3 N
|
Tabela 5: Stabilność termiczna (zachowanie materiału) - limit termiczny
MPL 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.15 kg / 6150.0 g
60.3 N
|
OK |
| 40 °C | -2.2% |
6.01 kg / 6014.7 g
59.0 N
|
OK |
| 60 °C | -4.4% |
5.88 kg / 5879.4 g
57.7 N
|
|
| 80 °C | -6.6% |
5.74 kg / 5744.1 g
56.3 N
|
|
| 100 °C | -28.8% |
4.38 kg / 4378.8 g
43.0 N
|
Tabela 6: Interakcja magnes-magnes (odpychanie) - kolizja pól
MPL 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
15.04 kg / 15045 g
147.6 N
4 923 Gs
|
N/A |
| 1 mm |
13.20 kg / 13202 g
129.5 N
6 544 Gs
|
11.88 kg / 11882 g
116.6 N
~0 Gs
|
| 2 mm |
11.36 kg / 11355 g
111.4 N
6 069 Gs
|
10.22 kg / 10220 g
100.3 N
~0 Gs
|
| 3 mm |
9.63 kg / 9626 g
94.4 N
5 588 Gs
|
8.66 kg / 8663 g
85.0 N
~0 Gs
|
| 5 mm |
6.71 kg / 6705 g
65.8 N
4 664 Gs
|
6.03 kg / 6035 g
59.2 N
~0 Gs
|
| 10 mm |
2.53 kg / 2531 g
24.8 N
2 865 Gs
|
2.28 kg / 2278 g
22.3 N
~0 Gs
|
| 20 mm |
0.41 kg / 406 g
4.0 N
1 148 Gs
|
0.37 kg / 366 g
3.6 N
~0 Gs
|
| 50 mm |
0.01 kg / 8 g
0.1 N
165 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Urządzenie mobilne | 40 Gs (4.0 mT) | 3.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.36 km/h
(8.16 m/s)
|
0.25 J | |
| 30 mm |
50.03 km/h
(13.90 m/s)
|
0.72 J | |
| 50 mm |
64.58 km/h
(17.94 m/s)
|
1.21 J | |
| 100 mm |
91.32 km/h
(25.37 m/s)
|
2.41 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 031 Mx | 70.3 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.15 kg | Standard |
| Woda (dno rzeki) |
7.04 kg
(+0.89 kg Zysk z wyporności)
|
+14.5% |
1. Montaż na ścianie (ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Grubość podłoża
*Cienka blacha (np. blacha karoseryjna) znacząco redukuje udźwig magnesu.
3. Praca w cieple
*Dla materiału N38 krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów z neodymu Nd2Fe14B.
Zalety
- Długowieczność to ich atut – po upływie dekady utrata siły magnetycznej wynosi jedynie ~1% (teoretycznie).
- Są niewrażliwe na wpływ innych pól, co czyni je odpornymi na rozmagnesowanie w wymagającym środowisku.
- Wykończenie materiałami takimi jak nikiel, srebro lub złoto nadaje im profesjonalny i gładki charakter.
- Indukcja magnetyczna na powierzchni tych magnesów jest imponująca, co czyni je najsilniejszymi w swojej klasie.
- Odpowiedni skład sprawia, że wykazują odporność na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Można je precyzyjnie obrabiać do niestandardowych wymiarów, co pozwala na ich adaptację w skomplikowanych urządzeniach.
- Są niezbędne w innowacjach, zasilając układy napędowe, sprzęt szpitalny czy elektronikę użytkową.
- Mały rozmiar, wielka moc – przy kompaktowej budowie oferują ogromną siłę, co jest kluczowe przy miniaturyzacji.
Słabe strony
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Zabezpieczenie w postaci obudowy to dobre rozwiązanie.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy serię [AH], działającą stabilnie aż do 230°C.
- Ryzyko korozji: bez osłony magnes zardzewieje na deszczu. Rozważ wersje w obudowie z tworzywa do zastosowań zewnętrznych.
- Z uwagi na specyfikę materiału, nie zaleca się gwintowania magnesu. Prościej użyć magnesu wklejonego w gniazdo z gwintem.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele uniemożliwia diagnostykę obrazową.
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być barierą.
Parametry udźwigu
Udźwig maksymalny dla magnesu neodymowego – co ma na to wpływ?
- z zastosowaniem blachy ze miękkiej stali, działającej jako zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- o wypolerowanej powierzchni styku
- w warunkach braku dystansu (powierzchnia do powierzchni)
- przy osiowym przyłożeniu siły odrywającej (kąt 90 stopni)
- w stabilnej temperaturze pokojowej
Praktyczne aspekty udźwigu – czynniki
- Szczelina – obecność ciała obcego (rdza, taśma, szczelina) działa jak izolator, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kąt przyłożenia siły – największą siłę osiągamy tylko przy prostopadłym odrywaniu. Siła potrzebna do przesunięcia magnesu po powierzchni jest zazwyczaj kilkukrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda blacha powoduje nasycenie magnetyczne, przez co część mocy ucieka na drugą stronę.
- Rodzaj stali – stal niskowęglowa przyciąga najlepiej. Stale stopowe zmniejszają właściwości magnetyczne i udźwig.
- Gładkość – idealny styk jest możliwy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
- Otoczenie termiczne – wzrost temperatury powoduje tymczasowy spadek indukcji. Należy pamiętać o limit termiczny dla danego modelu.
Siłę trzymania testowano na powierzchni blachy o grubości 20 mm, kiedy przyłożono siłę prostopadłą, natomiast przy próbie przesunięcia magnesu udźwig jest mniejszy nawet pięciokrotnie. Ponadto, nawet drobny odstęp pomiędzy powierzchnią magnesu, a blachą obniża nośność.
Ostrzeżenia
Potężne pole
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Niekontrolowane przyciągnięcie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych grozi pożarem. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Temperatura pracy
Kontroluj ciepło. Ekspozycja magnesu powyżej 80 stopni Celsjusza trwale osłabi jego strukturę magnetyczną i siłę przyciągania.
Zakłócenia GPS i telefonów
Urządzenia nawigacyjne są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może trwale uszkodzić czujniki w Twoim telefonie.
Ostrzeżenie dla alergików
Badania wskazują, że nikiel (standardowe zabezpieczenie magnesów) jest silnym alergenem. Jeśli masz uczulenie, unikaj kontaktu skóry z metalem lub zakup wersje w obudowie plastikowej.
Zagrożenie fizyczne
Chroń dłonie. Dwa duże magnesy zderzą z ogromną prędkością z siłą wielu ton, miażdżąc wszystko na swojej drodze. Bądź ostrożny!
Urządzenia elektroniczne
Unikaj zbliżania magnesów do dokumentów, laptopa czy ekranu. Pole magnetyczne może zniszczyć te urządzenia oraz wymazać paski magnetyczne z kart.
Zagrożenie życia
Osoby z kardiowerterem muszą zachować bezwzględny dystans od magnesów. Silny magnes może rozregulować działanie urządzenia ratującego życie.
Zagrożenie dla najmłodszych
Silne magnesy to nie zabawki. Połknięcie kilku magnesów może skutkować ich złączeniem się w jelitach, co stwarza śmiertelne niebezpieczeństwo i wymaga pilnej interwencji chirurgicznej.
Łamliwość magnesów
Magnesy neodymowe to spiek proszkowy, co oznacza, że są podatne na pęknięcia. Upadek dwóch magnesów wywoła ich rozpryśnięcie na ostre odłamki.
