MPL 20x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020128
GTIN/EAN: 5906301811343
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.15 kg / 60.31 N
Indukcja magnetyczna
349.47 mT / 3495 Gs
Powłoka
[NiCuNi] nikiel
4.54 ZŁ z VAT / szt. + cena za transport
3.69 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń i zapytaj
+48 22 499 98 98
ewentualnie skontaktuj się poprzez
formularz zgłoszeniowy
przez naszą stronę.
Moc i kształt magnesu neodymowego zobaczysz u nas w
naszym kalkulatorze magnetycznym.
Zamów do 14:00, a wyślemy dziś!
Parametry produktu - MPL 20x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020128 |
| GTIN/EAN | 5906301811343 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.15 kg / 60.31 N |
| Indukcja magnetyczna ~ ? | 349.47 mT / 3495 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu - dane
Niniejsze informacje stanowią bezpośredni efekt analizy fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą różnić się od wartości teoretycznych. Traktuj te wyliczenia jako pomoc pomocniczą przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - charakterystyka
MPL 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3493 Gs
349.3 mT
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
średnie ryzyko |
| 1 mm |
3035 Gs
303.5 mT
|
4.64 kg / 10.23 lbs
4641.8 g / 45.5 N
|
średnie ryzyko |
| 2 mm |
2558 Gs
255.8 mT
|
3.30 kg / 7.27 lbs
3298.0 g / 32.4 N
|
średnie ryzyko |
| 3 mm |
2120 Gs
212.0 mT
|
2.26 kg / 4.99 lbs
2264.8 g / 22.2 N
|
średnie ryzyko |
| 5 mm |
1433 Gs
143.3 mT
|
1.03 kg / 2.28 lbs
1034.5 g / 10.1 N
|
niskie ryzyko |
| 10 mm |
574 Gs
57.4 mT
|
0.17 kg / 0.37 lbs
166.1 g / 1.6 N
|
niskie ryzyko |
| 15 mm |
267 Gs
26.7 mT
|
0.04 kg / 0.08 lbs
35.9 g / 0.4 N
|
niskie ryzyko |
| 20 mm |
141 Gs
14.1 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
niskie ryzyko |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
niskie ryzyko |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
niskie ryzyko |
Tabela 2: Równoległa siła ześlizgu (pion)
MPL 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.23 kg / 2.71 lbs
1230.0 g / 12.1 N
|
| 1 mm | Stal (~0.2) |
0.93 kg / 2.05 lbs
928.0 g / 9.1 N
|
| 2 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
660.0 g / 6.5 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (ścinanie) - zachowanie na śliskim podłożu
MPL 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.85 kg / 4.07 lbs
1845.0 g / 18.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.23 kg / 2.71 lbs
1230.0 g / 12.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| 1 mm |
|
1.54 kg / 3.39 lbs
1537.5 g / 15.1 N
|
| 2 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 3 mm |
|
4.61 kg / 10.17 lbs
4612.5 g / 45.2 N
|
| 5 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 10 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 11 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 12 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - spadek mocy
MPL 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
OK |
| 40 °C | -2.2% |
6.01 kg / 13.26 lbs
6014.7 g / 59.0 N
|
OK |
| 60 °C | -4.4% |
5.88 kg / 12.96 lbs
5879.4 g / 57.7 N
|
|
| 80 °C | -6.6% |
5.74 kg / 12.66 lbs
5744.1 g / 56.3 N
|
|
| 100 °C | -28.8% |
4.38 kg / 9.65 lbs
4378.8 g / 43.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
15.04 kg / 33.17 lbs
4 923 Gs
|
2.26 kg / 4.98 lbs
2257 g / 22.1 N
|
N/A |
| 1 mm |
13.20 kg / 29.11 lbs
6 544 Gs
|
1.98 kg / 4.37 lbs
1980 g / 19.4 N
|
11.88 kg / 26.19 lbs
~0 Gs
|
| 2 mm |
11.36 kg / 25.03 lbs
6 069 Gs
|
1.70 kg / 3.76 lbs
1703 g / 16.7 N
|
10.22 kg / 22.53 lbs
~0 Gs
|
| 3 mm |
9.63 kg / 21.22 lbs
5 588 Gs
|
1.44 kg / 3.18 lbs
1444 g / 14.2 N
|
8.66 kg / 19.10 lbs
~0 Gs
|
| 5 mm |
6.71 kg / 14.78 lbs
4 664 Gs
|
1.01 kg / 2.22 lbs
1006 g / 9.9 N
|
6.03 kg / 13.30 lbs
~0 Gs
|
| 10 mm |
2.53 kg / 5.58 lbs
2 865 Gs
|
0.38 kg / 0.84 lbs
380 g / 3.7 N
|
2.28 kg / 5.02 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.90 lbs
1 148 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
165 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (elektronika) - środki ostrożności
MPL 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.36 km/h
(8.16 m/s)
|
0.25 J | |
| 30 mm |
50.03 km/h
(13.90 m/s)
|
0.72 J | |
| 50 mm |
64.58 km/h
(17.94 m/s)
|
1.21 J | |
| 100 mm |
91.32 km/h
(25.37 m/s)
|
2.41 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 031 Mx | 70.3 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Zastosowanie podwodne
MPL 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.15 kg | Standard |
| Woda (dno rzeki) |
7.04 kg
(+0.89 kg zysk z wyporności)
|
+14.5% |
1. Siła zsuwająca
*Pamiętaj: Na powierzchni pionowej magnes zachowa jedynie ok. 20-30% siły oderwania.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) wyraźnie ogranicza siłę trzymania.
3. Wytrzymałość temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Skład chemiczny materiału
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Inne produkty
Wady oraz zalety magnesów neodymowych Nd2Fe14B.
Mocne strony
- Utrzymują swoje właściwości przez lata – zakłada się, że po dekadzie tracą na sile o symboliczny 1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na pola rozmagnesowujące.
- Pokrycie materiałami takimi jak nikiel, srebro lub złoto nadaje im czysty i lśniący charakter.
- Generują niezwykle silne pole magnetyczne na swojej powierzchni, co jest ich znakiem rozpoznawczym.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od wymiarów).
- Możliwość uzyskania skomplikowanych kształtów sprawia, że są doskonałe do indywidualnych zastosowań.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po zaawansowaną aparaturę medyczną.
- Dzięki kompaktowości, nie wymagają dużej przestrzeni, a jednocześnie gwarantują wysoką skuteczność.
Wady
- Pamiętaj o ich kruchości – bez zabezpieczenia mogą pękać przy gwałtownym zwarciu.
- Gorąco to wróg neodymów – powyżej 80°C tracą właściwości. Do zadań specjalnych polecamy wersje odporne [AH], działającą stabilnie aż do 230°C.
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego służą specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są niebezpieczne dla najmłodszych. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Nie należą do tanich – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Parametry udźwigu
Maksymalna siła przyciągania magnesu – co ma na to wpływ?
- z zastosowaniem blachy ze stali niskowęglowej, która służy jako zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- przy bezpośrednim styku (brak zanieczyszczeń)
- dla siły działającej pod kątem prostym (na odrywanie, nie zsuwanie)
- w warunkach ok. 20°C
Udźwig w warunkach rzeczywistych – czynniki
- Szczelina – obecność ciała obcego (rdza, brud, powietrze) działa jak izolator, co obniża udźwig gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek siły – pamiętaj, że magnes ma największą siłę prostopadle. Przy zsuwaniu w dół, siła trzymania spada drastycznie, często do poziomu 20-30% wartości maksymalnej.
- Grubość ścianki – im cieńsza blacha, tym słabsze trzymanie. Strumień magnetyczny przenika na wylot, zamiast generować siłę.
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla osłabiają interakcję z magnesem.
- Faktura blachy – powierzchnie gładkie zapewniają maksymalny styk, co poprawia nasycenie pola. Powierzchnie chropowate osłabiają chwyt.
- Otoczenie termiczne – podgrzanie magnesu powoduje tymczasowy spadek indukcji. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu realizowano na gładkiej blaszce o optymalnej grubości, przy siłach prostopadłych, z kolei przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet pięciokrotnie. Dodatkowo, nawet drobny odstęp pomiędzy magnesem, a blachą zmniejsza nośność.
Bezpieczna praca z magnesami neodymowymi
Utrata mocy w cieple
Monitoruj warunki termiczne. Ekspozycja magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i udźwig.
Niszczenie danych
Bezpieczeństwo sprzętu: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, czasomierze).
Zagrożenie życia
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć stymulatory i defibrylatory. Nie zbliżaj się, jeśli posiadasz implanty elektroniczne.
Kompas i GPS
Moduły GPS i smartfony są wyjątkowo wrażliwe na pole magnetyczne. Bliskie sąsiedztwo z silnym magnesem może zniszczyć sensory w Twoim telefonie.
Ryzyko pożaru
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Proszek magnetyczny utlenia się błyskawicznie z tlenem i jest niebezpieczny.
Podatność na pękanie
Ryzyko skaleczenia. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając ostre odłamki w powietrze. Ochrona wzroku wymagana.
Potężne pole
Przed przystąpieniem do pracy, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub uszkodzić palce. Myśl o krok do przodu.
Urazy ciała
Chroń dłonie. Dwa duże magnesy złączą się błyskawicznie z siłą wielu ton, niszcząc wszystko na swojej drodze. Zachowaj ekstremalną uwagę!
Uwaga: zadławienie
Te produkty magnetyczne to nie zabawki. Połknięcie dwóch lub więcej magnesów może skutkować ich przyciągnięciem przez ścianki jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
Niklowa powłoka a alergia
Pewna grupa użytkowników posiada nadwrażliwość na nikiel, którym zabezpieczane są nasze produkty. Dłuższy kontakt może powodować silną reakcję alergiczną. Sugerujemy noszenie rękawic bezlateksowych.
