MPL 20x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020128
GTIN/EAN: 5906301811343
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.15 kg / 60.31 N
Indukcja magnetyczna
349.47 mT / 3495 Gs
Powłoka
[NiCuNi] nikiel
4.54 ZŁ z VAT / szt. + cena za transport
3.69 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Skontaktuj się z nami telefonicznie
+48 888 99 98 98
lub pisz korzystając z
formularz zapytania
na stronie kontakt.
Udźwig i kształt elementów magnetycznych zweryfikujesz dzięki naszemu
kalkulatorze magnetycznym.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Dane techniczne - MPL 20x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020128 |
| GTIN/EAN | 5906301811343 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.15 kg / 60.31 N |
| Indukcja magnetyczna ~ ? | 349.47 mT / 3495 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja techniczna magnesu - raport
Niniejsze wartości są wynik kalkulacji fizycznej. Wyniki oparte są na modelach dla klasy Nd2Fe14B. Realne osiągi mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.
Tabela 1: Siła prostopadła statyczna (siła vs dystans) - wykres oddziaływania
MPL 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg)(gram)(Niuton) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3493 Gs
349.3 mT
|
6.15 kg / 6150.0 g
60.3 N
|
mocny |
| 1 mm |
3035 Gs
303.5 mT
|
4.64 kg / 4641.8 g
45.5 N
|
mocny |
| 2 mm |
2558 Gs
255.8 mT
|
3.30 kg / 3298.0 g
32.4 N
|
mocny |
| 3 mm |
2120 Gs
212.0 mT
|
2.26 kg / 2264.8 g
22.2 N
|
mocny |
| 5 mm |
1433 Gs
143.3 mT
|
1.03 kg / 1034.5 g
10.1 N
|
niskie ryzyko |
| 10 mm |
574 Gs
57.4 mT
|
0.17 kg / 166.1 g
1.6 N
|
niskie ryzyko |
| 15 mm |
267 Gs
26.7 mT
|
0.04 kg / 35.9 g
0.4 N
|
niskie ryzyko |
| 20 mm |
141 Gs
14.1 mT
|
0.01 kg / 10.1 g
0.1 N
|
niskie ryzyko |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 1.4 g
0.0 N
|
niskie ryzyko |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.1 g
0.0 N
|
niskie ryzyko |
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg)(gram)(Niuton) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.23 kg / 1230.0 g
12.1 N
|
| 1 mm | Stal (~0.2) |
0.93 kg / 928.0 g
9.1 N
|
| 2 mm | Stal (~0.2) |
0.66 kg / 660.0 g
6.5 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 452.0 g
4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 206.0 g
2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 34.0 g
0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 8.0 g
0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 2.0 g
0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.0 g
0.0 N
|
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.85 kg / 1845.0 g
18.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.23 kg / 1230.0 g
12.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 615.0 g
6.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.08 kg / 3075.0 g
30.2 N
|
Tabela 4: Efektywność materiałowa (nasycenie) - dobór blachy
MPL 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 615.0 g
6.0 N
|
| 1 mm |
|
1.54 kg / 1537.5 g
15.1 N
|
| 2 mm |
|
3.08 kg / 3075.0 g
30.2 N
|
| 5 mm |
|
6.15 kg / 6150.0 g
60.3 N
|
| 10 mm |
|
6.15 kg / 6150.0 g
60.3 N
|
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.15 kg / 6150.0 g
60.3 N
|
OK |
| 40 °C | -2.2% |
6.01 kg / 6014.7 g
59.0 N
|
OK |
| 60 °C | -4.4% |
5.88 kg / 5879.4 g
57.7 N
|
|
| 80 °C | -6.6% |
5.74 kg / 5744.1 g
56.3 N
|
|
| 100 °C | -28.8% |
4.38 kg / 4378.8 g
43.0 N
|
Tabela 6: Dwa magnesy (przyciąganie) - siły w układzie
MPL 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg) (N-S) | Odpychanie (kg) (N-N) |
|---|---|---|
| 0 mm |
15.04 kg / 15045 g
147.6 N
4 923 Gs
|
N/A |
| 1 mm |
13.20 kg / 13202 g
129.5 N
6 544 Gs
|
11.88 kg / 11882 g
116.6 N
~0 Gs
|
| 2 mm |
11.36 kg / 11355 g
111.4 N
6 069 Gs
|
10.22 kg / 10220 g
100.3 N
~0 Gs
|
| 3 mm |
9.63 kg / 9626 g
94.4 N
5 588 Gs
|
8.66 kg / 8663 g
85.0 N
~0 Gs
|
| 5 mm |
6.71 kg / 6705 g
65.8 N
4 664 Gs
|
6.03 kg / 6035 g
59.2 N
~0 Gs
|
| 10 mm |
2.53 kg / 2531 g
24.8 N
2 865 Gs
|
2.28 kg / 2278 g
22.3 N
~0 Gs
|
| 20 mm |
0.41 kg / 406 g
4.0 N
1 148 Gs
|
0.37 kg / 366 g
3.6 N
~0 Gs
|
| 50 mm |
0.01 kg / 8 g
0.1 N
165 Gs
|
0.00 kg / 0 g
0.0 N
~0 Gs
|
Tabela 7: Bezpieczeństwo (BHP) (elektronika) - ostrzeżenia
MPL 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Dynamika (energia kinetyczna) - skutki zderzenia
MPL 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.36 km/h
(8.16 m/s)
|
0.25 J | |
| 30 mm |
50.03 km/h
(13.90 m/s)
|
0.72 J | |
| 50 mm |
64.58 km/h
(17.94 m/s)
|
1.21 J | |
| 100 mm |
91.32 km/h
(25.37 m/s)
|
2.41 J |
Tabela 9: Specyfikacja ochrony powierzchni
MPL 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Pc)
MPL 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 031 Mx | 70.3 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.15 kg | Standard |
| Woda (dno rzeki) |
7.04 kg
(+0.89 kg Zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Uwaga: Na powierzchni pionowej magnes utrzyma jedynie ułamek siły prostopadłej.
2. Grubość podłoża
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco redukuje udźwig magnesu.
3. Stabilność termiczna
*Dla standardowych magnesów krytyczny próg to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Są niezwykle trwałe – przez okres ok. 10 lat tracą maksymalnie ~1% swojej mocy (pomiary wskazują na taką wartość).
- Zewnętrzne pola magnetyczne nie powodują ich utraty mocy – posiadają dużą zdolność koercji.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują estetyczny, metaliczny wygląd.
- Oferują maksymalną indukcję magnetyczną w punkcie styku, co przekłada się na ogromną siłę.
- Specjalna mieszanka pierwiastków sprawia, że są odporne na wysokie temperatury (zależnie od kształtu, nawet do 230°C).
- Duża swoboda w doborze kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Pełnią kluczową rolę w rozwoju technologii, będąc sercem generatorów, dysków i urządzeń ratujących życie.
- Idealny stosunek wielkości do siły – są małe, ale niezwykle mocne, co pozwala na ich montaż w precyzyjnych mechanizmach.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd zalecenie stosowania osłon.
- Ograniczenia termiczne – dla zwykłych magnesów limit to 80°C. W trudnych warunkach (do 230°C) należy używać modele z oznaczeniem [AH].
- Podatność na wilgoć skutkuje utlenianiem. Do zadań zewnętrznych rekomendujemy wyłącznie magnesy w pełnej izolacji (plastik/guma).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, wybierz uchwytów w stalowej obudowie, które posiadają gotowe mocowania.
- Dbaj o bezpieczeństwo – połknięcie magnesów przez dziecko to zagrożenie życia. Ponadto, ich obecność w ciele komplikuje diagnostykę obrazową.
- Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na ekonomię rozwiązania.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- z użyciem podłoża ze stali o wysokiej przenikalności, która służy jako zwora magnetyczna
- o przekroju wynoszącej minimum 10 mm
- z powierzchnią wolną od rys
- przy całkowitym braku odstępu (bez farby)
- podczas odrywania w kierunku pionowym do powierzchni mocowania
- w standardowej temperaturze otoczenia
Co wpływa na udźwig w praktyce
- Szczelina powietrzna (między magnesem a blachą), bowiem nawet niewielka odległość (np. 0,5 mm) skutkuje redukcję siły nawet o 50% (dotyczy to także lakieru, rdzy czy zanieczyszczeń).
- Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy sile działającej równolegle, magnes trzyma znacznie mniejszą moc (często ok. 20-30% siły maksymalnej).
- Grubość podłoża – aby wykorzystać 100% mocy, stal musi być wystarczająco masywna. Cienka blacha limituje siłę przyciągania (magnes „przebija” ją na wylot).
- Gatunek stali – idealnym podłożem jest czysta stal żelazna. Stale nierdzewne mogą przyciągać słabiej.
- Gładkość – idealny styk jest możliwy tylko na gładkiej stali. Wszelkie rysy i nierówności tworzą poduszki powietrzne, redukując siłę.
- Wpływ temperatury – wysoka temperatura osłabia siłę przyciągania. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu wykonywano na blachach o gładkiej powierzchni o optymalnej grubości, przy siłach prostopadłych, jednak przy działaniu siły na zsuwanie siła trzymania jest mniejsza nawet pięciokrotnie. Co więcej, nawet niewielka szczelina między magnesem, a blachą zmniejsza udźwig.
Zasady BHP dla użytkowników magnesów
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne wpływa negatywnie na funkcjonowanie magnetometrów w telefonach i urządzeniach lokalizacyjnych. Zachowaj odstęp magnesów od telefonu, aby uniknąć awarii czujników.
Kruchość materiału
Magnesy neodymowe to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Upadek dwóch magnesów wywoła ich rozpryśnięcie na drobne kawałki.
Poważne obrażenia
Silne magnesy mogą zdruzgotać palce błyskawicznie. Pod żadnym pozorem wkładaj dłoni pomiędzy dwa silne magnesy.
Zasady obsługi
Zachowaj rozwagę. Magnesy neodymowe działają z dużej odległości i zwierają z ogromną siłą, często gwałtowniej niż zdążysz zareagować.
Nie przegrzewaj magnesów
Uważaj na temperaturę. Podgrzanie magnesu na wysoką temperaturę zdegraduje jego strukturę magnetyczną i siłę przyciągania.
Nie dawać dzieciom
Magnesy neodymowe nie są przeznaczone dla dzieci. Połknięcie kilku magnesów może skutkować ich zaciśnięciem jelit, co stanowi śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.
Obróbka mechaniczna
Szlifowanie magnesów neodymowych grozi pożarem. Pył neodymowy reaguje gwałtownie z tlenem i jest niebezpieczny.
Niszczenie danych
Zagrożenie dla danych: Magnesy neodymowe mogą uszkodzić karty bankomatowe oraz delikatną elektronikę (rozruszniki serca, aparaty słuchowe, zegarki mechaniczne).
Ryzyko uczulenia
Informacja alergiczna: powłoka Ni-Cu-Ni zawiera nikiel. W przypadku pojawienia się reakcji alergicznej, należy bezzwłocznie zakończyć pracę z magnesami i zabezpieczyć dłonie.
Ostrzeżenie dla sercowców
Pacjenci z stymulatorem serca muszą zachować duży odstęp od magnesów. Pole magnetyczne może zatrzymać działanie implantu.
