MPL 20x10x5 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020128
GTIN/EAN: 5906301811343
Długość
20 mm [±0,1 mm]
Szerokość
10 mm [±0,1 mm]
Wysokość
5 mm [±0,1 mm]
Waga
7.5 g
Kierunek magnesowania
↑ osiowy
Udźwig
6.15 kg / 60.31 N
Indukcja magnetyczna
349.47 mT / 3495 Gs
Powłoka
[NiCuNi] nikiel
4.54 ZŁ z VAT / szt. + cena za transport
3.69 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Zadzwoń do nas
+48 888 99 98 98
albo pisz przez
nasz formularz online
na stronie kontakt.
Masę i budowę magnesów neodymowych wyliczysz u nas w
kalkulatorze siły.
Wysyłka tego samego dnia dla zamówień do godz. 14:00.
Szczegółowa specyfikacja MPL 20x10x5 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 20x10x5 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020128 |
| GTIN/EAN | 5906301811343 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 20 mm [±0,1 mm] |
| Szerokość | 10 mm [±0,1 mm] |
| Wysokość | 5 mm [±0,1 mm] |
| Waga | 7.5 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 6.15 kg / 60.31 N |
| Indukcja magnetyczna ~ ? | 349.47 mT / 3495 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja inżynierska magnesu neodymowego - raport
Przedstawione dane są wynik kalkulacji matematycznej. Wyniki zostały wyliczone na modelach dla materiału Nd2Fe14B. Rzeczywiste warunki mogą się różnić. Traktuj te wyliczenia jako punkt odniesienia dla projektantów.
Tabela 1: Siła prostopadła statyczna (siła vs odległość) - charakterystyka
MPL 20x10x5 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
3493 Gs
349.3 mT
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
średnie ryzyko |
| 1 mm |
3035 Gs
303.5 mT
|
4.64 kg / 10.23 lbs
4641.8 g / 45.5 N
|
średnie ryzyko |
| 2 mm |
2558 Gs
255.8 mT
|
3.30 kg / 7.27 lbs
3298.0 g / 32.4 N
|
średnie ryzyko |
| 3 mm |
2120 Gs
212.0 mT
|
2.26 kg / 4.99 lbs
2264.8 g / 22.2 N
|
średnie ryzyko |
| 5 mm |
1433 Gs
143.3 mT
|
1.03 kg / 2.28 lbs
1034.5 g / 10.1 N
|
słaby uchwyt |
| 10 mm |
574 Gs
57.4 mT
|
0.17 kg / 0.37 lbs
166.1 g / 1.6 N
|
słaby uchwyt |
| 15 mm |
267 Gs
26.7 mT
|
0.04 kg / 0.08 lbs
35.9 g / 0.4 N
|
słaby uchwyt |
| 20 mm |
141 Gs
14.1 mT
|
0.01 kg / 0.02 lbs
10.1 g / 0.1 N
|
słaby uchwyt |
| 30 mm |
52 Gs
5.2 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
13 Gs
1.3 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Siła równoległa obsunięcia (pion)
MPL 20x10x5 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.23 kg / 2.71 lbs
1230.0 g / 12.1 N
|
| 1 mm | Stal (~0.2) |
0.93 kg / 2.05 lbs
928.0 g / 9.1 N
|
| 2 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
660.0 g / 6.5 N
|
| 3 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 5 mm | Stal (~0.2) |
0.21 kg / 0.45 lbs
206.0 g / 2.0 N
|
| 10 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - udźwig wertykalny
MPL 20x10x5 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
1.85 kg / 4.07 lbs
1845.0 g / 18.1 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.23 kg / 2.71 lbs
1230.0 g / 12.1 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
Tabela 4: Efektywność materiałowa (wpływ podłoża) - straty mocy
MPL 20x10x5 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.62 kg / 1.36 lbs
615.0 g / 6.0 N
|
| 1 mm |
|
1.54 kg / 3.39 lbs
1537.5 g / 15.1 N
|
| 2 mm |
|
3.08 kg / 6.78 lbs
3075.0 g / 30.2 N
|
| 3 mm |
|
4.61 kg / 10.17 lbs
4612.5 g / 45.2 N
|
| 5 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 10 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 11 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
| 12 mm |
|
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
Tabela 5: Praca w cieple (zachowanie materiału) - próg odporności
MPL 20x10x5 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
6.15 kg / 13.56 lbs
6150.0 g / 60.3 N
|
OK |
| 40 °C | -2.2% |
6.01 kg / 13.26 lbs
6014.7 g / 59.0 N
|
OK |
| 60 °C | -4.4% |
5.88 kg / 12.96 lbs
5879.4 g / 57.7 N
|
|
| 80 °C | -6.6% |
5.74 kg / 12.66 lbs
5744.1 g / 56.3 N
|
|
| 100 °C | -28.8% |
4.38 kg / 9.65 lbs
4378.8 g / 43.0 N
|
Tabela 6: Dwa magnesy (odpychanie) - kolizja pól
MPL 20x10x5 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Opór ścinania (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
15.04 kg / 33.17 lbs
4 923 Gs
|
2.26 kg / 4.98 lbs
2257 g / 22.1 N
|
N/A |
| 1 mm |
13.20 kg / 29.11 lbs
6 544 Gs
|
1.98 kg / 4.37 lbs
1980 g / 19.4 N
|
11.88 kg / 26.19 lbs
~0 Gs
|
| 2 mm |
11.36 kg / 25.03 lbs
6 069 Gs
|
1.70 kg / 3.76 lbs
1703 g / 16.7 N
|
10.22 kg / 22.53 lbs
~0 Gs
|
| 3 mm |
9.63 kg / 21.22 lbs
5 588 Gs
|
1.44 kg / 3.18 lbs
1444 g / 14.2 N
|
8.66 kg / 19.10 lbs
~0 Gs
|
| 5 mm |
6.71 kg / 14.78 lbs
4 664 Gs
|
1.01 kg / 2.22 lbs
1006 g / 9.9 N
|
6.03 kg / 13.30 lbs
~0 Gs
|
| 10 mm |
2.53 kg / 5.58 lbs
2 865 Gs
|
0.38 kg / 0.84 lbs
380 g / 3.7 N
|
2.28 kg / 5.02 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.90 lbs
1 148 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.37 kg / 0.81 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
165 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
104 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
69 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
35 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
26 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Strefy ochronne (implanty) - ostrzeżenia
MPL 20x10x5 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 7.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 6.0 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 4.5 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 3.5 cm |
| Pilot do auta | 50 Gs (5.0 mT) | 3.5 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.5 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Energia uderzenia (ryzyko pęknięcia) - ostrzeżenie
MPL 20x10x5 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
29.36 km/h
(8.16 m/s)
|
0.25 J | |
| 30 mm |
50.03 km/h
(13.90 m/s)
|
0.72 J | |
| 50 mm |
64.58 km/h
(17.94 m/s)
|
1.21 J | |
| 100 mm |
91.32 km/h
(25.37 m/s)
|
2.41 J |
Tabela 9: Parametry powłoki (trwałość)
MPL 20x10x5 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane konstrukcyjne (Flux)
MPL 20x10x5 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 7 031 Mx | 70.3 µWb |
| Współczynnik Pc | 0.42 | Niski (Płaski) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 20x10x5 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 6.15 kg | Standard |
| Woda (dno rzeki) |
7.04 kg
(+0.89 kg zysk z wyporności)
|
+14.5% |
1. Udźwig w pionie
*Pamiętaj: Na powierzchni pionowej magnes utrzyma zaledwie ułamek nominalnego udźwigu.
2. Nasycenie magnetyczne
*Cienka blacha (np. blacha karoseryjna) drastycznie ogranicza siłę trzymania.
3. Spadek mocy w temperaturze
*W klasie N38 maksymalna temperatura to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.42
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Specyfikacja materiałowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Zrównoważony rozwój
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Zobacz też inne oferty
Zalety i wady magnesów neodymowych Nd2Fe14B.
Korzyści
- Ich parametry są stabilne w czasie; po 10 latach użytkowania redukcja udźwigu to znikome ~1%.
- Inne źródła magnetyzmu nie powodują ich utraty mocy – posiadają wysoki współczynnik koercji.
- Warstwa ochronna (np. niklowa) zapewnia im metaliczny połysk, co podnosi ich walory wizualne.
- Cechują się bardzo wysoką gęstością pola na powierzchni, co umożliwia silne chwytanie nawet małych elementów.
- Mogą pracować w gorącym otoczeniu – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Szerokie możliwości w projektowaniu kształtu i wymiaru to ich wielka zaleta w konstrukcjach.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od napędów HDD i silników, po precyzyjną diagnostykę.
- Dzięki kompaktowości, zajmują mało miejsca, a jednocześnie zapewniają wysoką skuteczność.
Ograniczenia
- Są wrażliwe na uderzenia – materiał jest kruchy i grozi pęknięciem. Ochrona w postaci obudowy to dobre rozwiązanie.
- Wrażliwość na ciepło: przekroczenie 80°C może trwale osłabić magnes (zależnie od wymiarów). Rozwiązaniem są nasze magnesy wysokotemperaturowe [AH].
- Brak odporności na wodę skutkuje utlenianiem. Do zadań zewnętrznych sugerujemy wyłącznie magnesy zabezpieczone antykorozyjnie (plastik/guma).
- Magnesy ciężko się obrabia – do montażu śrubowego przeznaczone są specjalne uchwyty magnetyczne z wbudowanym gwintem.
- Ryzyko połknięcia – małe elementy są groźne dla dzieci. Połknięcie kilku sztuk grozi operacją. Dodatkowo mogą utrudniać badania (np. rezonans).
- Cena – są droższe niż magnesy ferrytowe, co przy wielkich nakładach może być istotnym kosztem.
Analiza siły trzymania
Wytrzymałość magnetyczna na maksimum – od czego zależy?
- z zastosowaniem blachy ze miękkiej stali, pełniącej rolę idealny przewodnik strumienia
- o grubości przynajmniej 10 mm
- z powierzchnią wolną od rys
- przy bezpośrednim styku (brak powłok)
- podczas ciągnięcia w kierunku prostopadłym do płaszczyzny mocowania
- w temperaturze pokojowej
Wpływ czynników na nośność magnesu w praktyce
- Szczelina – występowanie jakiejkolwiek warstwy (rdza, taśma, powietrze) przerywa obwód magnetyczny, co redukuje moc gwałtownie (nawet o 50% przy 0,5 mm).
- Kierunek działania siły – największą siłę uzyskujemy tylko przy ciągnięciu pod kątem 90°. Siła ścinająca magnesu po blasze jest zazwyczaj wielokrotnie niższa (ok. 1/5 udźwigu).
- Grubość stali – za chuda płyta powoduje nasycenie magnetyczne, przez co część mocy marnuje się na drugą stronę.
- Skład materiału – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
- Gładkość – idealny styk uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, osłabiając magnes.
- Temperatura – podgrzanie magnesu skutkuje osłabieniem siły. Warto sprawdzić maksymalną temperaturę pracy dla danego modelu.
Pomiar udźwigu przeprowadzano na gładkiej blaszce o optymalnej grubości, przy prostopadłym działaniu siły, natomiast przy siłach działających równolegle siła trzymania jest mniejsza nawet pięciokrotnie. Ponadto, nawet minimalna przerwa pomiędzy powierzchnią magnesu, a blachą zmniejsza siłę trzymania.
Ostrzeżenia
Zasady obsługi
Zanim zaczniesz, zapoznaj się z zasadami. Gwałtowne złączenie może zniszczyć magnes lub zranić dłoń. Myśl o krok do przodu.
Ostrzeżenie dla alergików
Pewna grupa użytkowników ma alergię kontaktową na nikiel, którym powlekane są standardowo magnesy neodymowe. Częste dotykanie może powodować silną reakcję alergiczną. Sugerujemy stosowanie rękawiczek ochronnych.
Implanty medyczne
Zagrożenie życia: Magnesy neodymowe mogą wyłączyć rozruszniki serca i defibrylatory. Unikaj kontaktu, jeśli masz wszczepione urządzenia wspomagające.
Ochrona dłoni
Duże magnesy mogą zmiażdżyć palce błyskawicznie. Nigdy umieszczaj dłoni pomiędzy dwa silne magnesy.
Bezpieczny dystans
Ekstremalne pole magnetyczne może skasować dane na kartach kredytowych, dyskach twardych i innych pamięciach. Zachowaj odstęp min. 10 cm.
Ryzyko pęknięcia
Uwaga na odpryski. Magnesy mogą pęknąć przy niekontrolowanym uderzeniu, rozrzucając kawałki metalu w powietrze. Zalecamy okulary ochronne.
Elektronika precyzyjna
Intensywne promieniowanie magnetyczne destabilizuje funkcjonowanie kompasów w telefonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów do smartfona, aby nie uszkodzić czujników.
Zagrożenie wybuchem pyłu
Zagrożenie pożarowe: Pył neodymowy jest wysoce łatwopalny. Nie modyfikuj mechanicznie magnesów amatorsko, gdyż może to wywołać pożar.
Temperatura pracy
Uważaj na temperaturę. Podgrzanie magnesu powyżej 80 stopni Celsjusza zdegraduje jego domenę magnetyczną i siłę przyciągania.
Produkt nie dla dzieci
Neodymowe magnesy to nie zabawki. Inhalacja dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza stan krytyczny i wymaga natychmiastowej operacji.
