Neodymy – pełny wybór kształtów

Potrzebujesz silnego pola magnetycznego? Oferujemy kompleksowy asortyment magnesów o różnych kształtach i wymiarach. To najlepszy wybór do zastosowań domowych, warsztatu oraz zadań przemysłowych. Zobacz produkty z szybką wysyłką.

poznaj katalog magnesów

Sprzęt dla poszukiwaczy skarbów

Odkryj pasję związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to pewność chwytu i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz wzmocnione liny są niezawodne w trudnych warunkach wodnych.

znajdź zestaw dla siebie

Niezawodne uchwyty z gwintem

Niezawodne rozwiązania do mocowania bez wiercenia. Uchwyty z gwintem (zewnętrznym lub wewnętrznym) zapewniają błyskawiczną organizację pracy na halach produkcyjnych. Idealnie nadają się przy mocowaniu oświetlenia, sensorów oraz banerów.

sprawdź zastosowania przemysłowe

🚀 Błyskawiczna realizacja: zamówienia do 14:00 wysyłamy w 24h!

Dhit sp. z o.o.
Produkt dostępny Zamów do 14:00 – wyślemy dzisiaj!

MPL 15x3x6 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020122

GTIN/EAN: 5906301811282

5.00

Długość

15 mm [±0,1 mm]

Szerokość

3 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

2.03 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.90 kg / 18.68 N

Indukcja magnetyczna

543.23 mT / 5432 Gs

Powłoka

[NiCuNi] nikiel

0.726 z VAT / szt. + cena za transport

0.590 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.590 ZŁ
0.726 ZŁ
cena od 1100 szt.
0.555 ZŁ
0.682 ZŁ
cena od 4300 szt.
0.519 ZŁ
0.639 ZŁ
Chcesz się targować?

Zadzwoń do nas +48 888 99 98 98 lub napisz korzystając z formularz zapytania na stronie kontakt.
Parametry oraz budowę magnesu neodymowego zweryfikujesz dzięki naszemu modułowym kalkulatorze.

Realizacja tego samego dnia przy zamówieniu do 14:00.

MPL 15x3x6 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka MPL 15x3x6 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020122
GTIN/EAN 5906301811282
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 15 mm [±0,1 mm]
Szerokość 3 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 2.03 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.90 kg / 18.68 N
Indukcja magnetyczna ~ ? 543.23 mT / 5432 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 15x3x6 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Analiza inżynierska magnesu neodymowego - raport

Niniejsze informacje stanowią wynik kalkulacji inżynierskiej. Wartości bazują na algorytmach dla materiału Nd2Fe14B. Rzeczywiste osiągi mogą różnić się od wartości teoretycznych. Prosimy traktować te wyliczenia jako punkt odniesienia przy projektowaniu systemów.

Tabela 1: Siła prostopadła statyczna (udźwig vs odległość) - wykres oddziaływania
MPL 15x3x6 / N38
Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg)(gram)(Niuton) Status ryzyka
0 mm 5423 Gs
542.3 mT
1.90 kg / 1900.0 g
18.6 N
słaby uchwyt
1 mm 3221 Gs
322.1 mT
0.67 kg / 670.2 g
6.6 N
słaby uchwyt
2 mm 1942 Gs
194.2 mT
0.24 kg / 243.7 g
2.4 N
słaby uchwyt
3 mm 1274 Gs
127.4 mT
0.10 kg / 104.9 g
1.0 N
słaby uchwyt
5 mm 652 Gs
65.2 mT
0.03 kg / 27.5 g
0.3 N
słaby uchwyt
10 mm 195 Gs
19.5 mT
0.00 kg / 2.5 g
0.0 N
słaby uchwyt
15 mm 81 Gs
8.1 mT
0.00 kg / 0.4 g
0.0 N
słaby uchwyt
20 mm 41 Gs
4.1 mT
0.00 kg / 0.1 g
0.0 N
słaby uchwyt
30 mm 14 Gs
1.4 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
50 mm 4 Gs
0.4 mT
0.00 kg / 0.0 g
0.0 N
słaby uchwyt
Tabela 2: Siła równoległa ześlizgu (pion)
MPL 15x3x6 / N38
Dystans (mm) Współczynnik tarcia Udźwig (kg)(gram)(Niuton)
0 mm Stal (~0.2) 0.38 kg / 380.0 g
3.7 N
1 mm Stal (~0.2) 0.13 kg / 134.0 g
1.3 N
2 mm Stal (~0.2) 0.05 kg / 48.0 g
0.5 N
3 mm Stal (~0.2) 0.02 kg / 20.0 g
0.2 N
5 mm Stal (~0.2) 0.01 kg / 6.0 g
0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.0 g
0.0 N
Tabela 3: Siła na ścianie (ścinanie) - udźwig wertykalny
MPL 15x3x6 / N38
Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.57 kg / 570.0 g
5.6 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.38 kg / 380.0 g
3.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.19 kg / 190.0 g
1.9 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.95 kg / 950.0 g
9.3 N
Tabela 4: Grubość stali (wpływ podłoża) - straty mocy
MPL 15x3x6 / N38
Grubość blachy (mm) % mocy Realny udźwig (kg)
0.5 mm
10%
0.19 kg / 190.0 g
1.9 N
1 mm
25%
0.48 kg / 475.0 g
4.7 N
2 mm
50%
0.95 kg / 950.0 g
9.3 N
5 mm
100%
1.90 kg / 1900.0 g
18.6 N
10 mm
100%
1.90 kg / 1900.0 g
18.6 N
Tabela 5: Wytrzymałość temperaturowa (zachowanie materiału) - próg odporności
MPL 15x3x6 / N38
Temp. otoczenia (°C) Strata mocy Pozostały udźwig Status
20 °C 0.0% 1.90 kg / 1900.0 g
18.6 N
OK
40 °C -2.2% 1.86 kg / 1858.2 g
18.2 N
OK
60 °C -4.4% 1.82 kg / 1816.4 g
17.8 N
OK
80 °C -6.6% 1.77 kg / 1774.6 g
17.4 N
100 °C -28.8% 1.35 kg / 1352.8 g
13.3 N
Tabela 6: Interakcja magnes-magnes (odpychanie) - zasięg pola
MPL 15x3x6 / N38
Szczelina (mm) Przyciąganie (kg) (N-S) Odpychanie (kg) (N-N)
0 mm 8.16 kg / 8158 g
80.0 N
5 914 Gs
N/A
1 mm 4.96 kg / 4964 g
48.7 N
8 460 Gs
4.47 kg / 4468 g
43.8 N
~0 Gs
2 mm 2.88 kg / 2878 g
28.2 N
6 441 Gs
2.59 kg / 2590 g
25.4 N
~0 Gs
3 mm 1.70 kg / 1699 g
16.7 N
4 950 Gs
1.53 kg / 1529 g
15.0 N
~0 Gs
5 mm 0.67 kg / 673 g
6.6 N
3 116 Gs
0.61 kg / 606 g
5.9 N
~0 Gs
10 mm 0.12 kg / 118 g
1.2 N
1 304 Gs
0.11 kg / 106 g
1.0 N
~0 Gs
20 mm 0.01 kg / 11 g
0.1 N
391 Gs
0.01 kg / 10 g
0.1 N
~0 Gs
50 mm 0.00 kg / 0 g
0.0 N
46 Gs
0.00 kg / 0 g
0.0 N
~0 Gs
Tabela 7: Zagrożenia (implanty) - ostrzeżenia
MPL 15x3x6 / N38
Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Czasomierz 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm
Tabela 8: Zderzenia (ryzyko pęknięcia) - skutki zderzenia
MPL 15x3x6 / N38
Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 30.88 km/h
(8.58 m/s)
0.07 J
30 mm 53.44 km/h
(14.84 m/s)
0.22 J
50 mm 68.99 km/h
(19.16 m/s)
0.37 J
100 mm 97.57 km/h
(27.10 m/s)
0.75 J
Tabela 9: Odporność na korozję
MPL 15x3x6 / N38
Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)
Tabela 10: Dane konstrukcyjne (Pc)
MPL 15x3x6 / N38
Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 390 Mx 23.9 µWb
Współczynnik Pc 0.79 Wysoki (Stabilny)
Tabela 11: Fizyka poszukiwań podwodnych
MPL 15x3x6 / N38
Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.90 kg Standard
Woda (dno rzeki) 2.18 kg
(+0.28 kg Zysk z wyporności)
+14.5%
Ryzyko rdzy: Ten magnes ma standardową powłokę niklową. Po użyciu w wodzie należy go natychmiast wysuszyć i zakonserwować, inaczej zardzewieje!
1. Ześlizg (ściana)

*Ważne: Na pionowej ścianie magnes zachowa tylko ok. 20-30% nominalnego udźwigu.

2. Nasycenie magnetyczne

*Cienka blacha (np. blacha karoseryjna) drastycznie osłabia siłę trzymania.

3. Stabilność termiczna

*Dla standardowych magnesów maksymalna temperatura to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Dane techniczne i środowiskowe
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Zrównoważony rozwój
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020122-2025
Szybki konwerter jednostek
Siła oderwania

Indukcja magnetyczna

Zobacz też inne propozycje

Komponent MPL 15x3x6 / N38 cechuje się niskim profilem oraz przemysłową siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Jako sztabka magnetyczna o dużej mocy (ok. 1.90 kg), produkt ten jest dostępny natychmiast z naszego magazynu w Polsce. Ponadto, jego powłoka Ni-Cu-Ni chroni go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Kluczem do sukcesu jest zsuniecie magnesów wzdłuż ich największej płaszczyzny łączenia (wykorzystując np. krawędź stołu), co jest łatwiejsze niż próba ich rozerwania wprost. Uważaj na palce! Magnesy o sile 1.90 kg potrafią bardzo mocno uszczypnąć i spowodować krwiaki. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 15x3x6 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak filtry wyłapujące opiłki oraz silniki liniowe. Dzięki płaskiej powierzchni i dużej sile (ok. 1.90 kg), są idealne jako ukryte zamki w meblarstwie oraz elementy montażowe w automatyce. Ich prostokątny kształt ułatwia precyzyjne wklejanie w wyfrezowane gniazda w drewnie lub tworzywie.
Do montażu magnesów płaskich MPL 15x3x6 / N38 polecamy stosować kleje dwuskładnikowe (np. UHU Endfest, Distal), które zapewniają trwałe połączenie z metalem lub tworzywem. Taśma dwustronna amortyzuje drgania, co jest zaletą przy montażu w elementach ruchomych. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 15x3x6 / N38 jest magnesowany przez grubość (wymiar 6 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. W praktyce oznacza to, że magnes ten ma największą siłę przyciągania na swoich głównych płaszczyznach (15x3 mm), co jest idealne do montażu na płasko. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 15x3x6 mm, co przy wadze 2.03 g czyni go elementem o imponującej gęstości energii. Kluczowym parametrem jest tutaj udźwig wynoszący około 1.90 kg (siła ~18.68 N), co przy tak kompaktowym kształcie świadczy o dużej mocy materiału. Produkt spełnia normy dla magnesów klasy N38.

Wady oraz zalety magnesów z neodymu Nd2Fe14B.

Korzyści
Warto zwrócić uwagę, że obok wysokiej siły, magnesy te wyróżniają się następującymi plusami:
  • Praktycznie nie ulegają osłabieniu w czasie; po 10 latach eksploatacji redukcja udźwigu to znikome ~1%.
  • Charakteryzują się ogromną odpornością na demagnetyzację, nawet w obecności innych silnych magnesów.
  • Dzięki powłoce (nikiel, Au, Ag) zyskują estetyczny, błyszczący wygląd.
  • Generują niezwykle silne pole magnetyczne przy biegunach, co jest ich znakiem rozpoznawczym.
  • Mogą pracować w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Wszechstronność kształtowania – można je produkować w rozmaitych formach, dopasowanych do wymagań klienta.
  • Spotkasz je wszędzie tam, gdzie liczy się precyzja: w automatyce, medycynie oraz przemyśle komputerowym.
  • Potęga w małej formie – ich mała masa nie przeszkadza w generowaniu dużej siły przyciągania.
Ograniczenia
Mimo zalet, posiadają też wady:
  • Uwaga na uszkodzenia mechaniczne – bez odpowiedniej obudowy mogą pękać przy gwałtownym zwarciu.
  • Standardowe magnesy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, zastosuj serię [AH] (odporną do 230°C).
  • Wilgoć powoduje korozję w kontakcie z wodą. Na zewnątrz zalecamy użycie magnesów wodoszczelnych (np. w gumie).
  • Z uwagi na specyfikę materiału, nie zaleca się obróbki mechanicznej magnesu. Bezpieczniej użyć magnesu wklejonego w stalowy kubek z gwintem.
  • Ryzyko połknięcia – drobne magnesy są groźne dla najmłodszych. Połknięcie kilku sztuk grozi poważnymi obrażeniami. Dodatkowo mogą zakłócać badania (np. rezonans).
  • Za jakość trzeba płacić – magnesy neodymowe są droższe od ceramicznych, co wpływa na budżet projektu.

Parametry udźwigu

Wytrzymałość na oderwanie magnesu w warunkach idealnychco ma na to wpływ?
Informacja o udźwigu to rezultat pomiaru dla najkorzystniejszych warunków, zakładającej:
  • na podłożu wykonanej ze stali miękkiej, optymalnie przewodzącej strumień magnetyczny
  • posiadającej grubość min. 10 mm aby uniknąć nasycenia
  • charakteryzującej się równą strukturą
  • przy całkowitym braku odstępu (bez farby)
  • dla siły działającej pod kątem prostym (w osi magnesu)
  • w standardowej temperaturze otoczenia
Czynniki determinujące udźwig w warunkach realnych
Warto wiedzieć, iż trzymanie magnesu może być niższe zależnie od poniższych elementów, w kolejności ważności:
  • Dystans (pomiędzy magnesem a blachą), gdyż nawet bardzo mała odległość (np. 0,5 mm) skutkuje drastyczny spadek udźwigu nawet o 50% (dotyczy to także lakieru, korozji czy zanieczyszczeń).
  • Kierunek siły – deklarowany udźwig dotyczy odrywania w pionie. Przy próbie przesunięcia, magnes trzyma znacznie mniejszą moc (zazwyczaj ok. 20-30% siły maksymalnej).
  • Grubość metalu – im cieńsza blacha, tym słabsze trzymanie. Część pola magnetycznego przenika na wylot, zamiast generować siłę.
  • Typ metalu – różne stopy przyciąga się identycznie. Dodatki stopowe pogarszają interakcję z magnesem.
  • Wykończenie powierzchni – pełny kontakt uzyskamy tylko na wypolerowanej stali. Chropowata faktura zmniejszają realną powierzchnię styku, redukując siłę.
  • Wpływ temperatury – gorące środowisko zmniejsza pole magnetyczne. Zbyt wysoka temperatura może trwale uszkodzić magnes.

Siłę trzymania sprawdzano na powierzchni blachy o grubości 20 mm, kiedy działała siła prostopadła, jednak przy próbie przesunięcia magnesu siła trzymania jest mniejsza nawet 75%. Co więcej, nawet minimalna przerwa pomiędzy magnesem, a blachą zmniejsza nośność.

BHP przy magnesach
Limity termiczne

Standardowe magnesy neodymowe (klasa N) tracą moc po osiągnięciu temperatury 80°C. Uszkodzenie jest permanentne.

Ryzyko zmiażdżenia

Duże magnesy mogą zdruzgotać palce w ułamku sekundy. Pod żadnym pozorem umieszczaj dłoni pomiędzy dwa przyciągające się elementy.

Zagrożenie dla elektroniki

Ochrona danych: Magnesy neodymowe mogą zdegradować nośniki danych oraz delikatną elektronikę (implanty, aparaty słuchowe, zegarki mechaniczne).

Pył jest łatwopalny

Ryzyko wybuchu: Pył neodymowy jest skrajnie łatwopalny. Nie poddawaj magnesów obróbce w warunkach domowych, gdyż może to wywołać pożar.

Alergia na nikiel

Niektóre osoby posiada nadwrażliwość na nikiel, którym pokryta jest większość nasze produkty. Długotrwała ekspozycja może powodować silną reakcję alergiczną. Zalecamy stosowanie rękawiczek ochronnych.

Zagrożenie życia

Osoby z stymulatorem serca muszą utrzymać bezwzględny dystans od magnesów. Pole magnetyczne może zatrzymać działanie implantu.

Siła neodymu

Używaj magnesy odpowiedzialnie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i nie lekceważ ich siły.

Uwaga na odpryski

Spieki NdFeB to materiał ceramiczny, co oznacza, że są łamliwe jak szkło. Gwałtowne złączenie dwóch magnesów spowoduje ich pęknięcie na drobne kawałki.

Produkt nie dla dzieci

Neodymowe magnesy nie służą do zabawy. Przypadkowe zjedzenie dwóch lub więcej magnesów może skutkować ich zaciśnięciem jelit, co stwarza śmiertelne niebezpieczeństwo i wiąże się z koniecznością pilnej interwencji chirurgicznej.

Trzymaj z dala od elektroniki

Silne pole magnetyczne wpływa negatywnie na funkcjonowanie czujników w smartfonach i urządzeniach lokalizacyjnych. Nie zbliżaj magnesów od telefonu, aby uniknąć awarii czujników.

Ostrzeżenie! Szukasz szczegółów? Przeczytaj nasz artykuł: Czy magnesy są groźne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98