MPL 15x3x6 / N38 - magnes neodymowy płytkowy
magnes neodymowy płytkowy
Numer katalogowy 020122
GTIN/EAN: 5906301811282
Długość
15 mm [±0,1 mm]
Szerokość
3 mm [±0,1 mm]
Wysokość
6 mm [±0,1 mm]
Waga
2.03 g
Kierunek magnesowania
↑ osiowy
Udźwig
1.90 kg / 18.68 N
Indukcja magnetyczna
543.23 mT / 5432 Gs
Powłoka
[NiCuNi] nikiel
0.726 ZŁ z VAT / szt. + cena za transport
0.590 ZŁ netto + 23% VAT / szt.
upusty ilościowe:
Potrzebujesz więcej?
Dzwoń do nas
+48 22 499 98 98
ewentualnie zostaw wiadomość poprzez
formularz
przez naszą stronę.
Udźwig i wygląd magnesu neodymowego obliczysz u nas w
kalkulatorze masy magnetycznej.
Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.
Właściwości fizyczne MPL 15x3x6 / N38 - magnes neodymowy płytkowy
Specyfikacja / charakterystyka - MPL 15x3x6 / N38 - magnes neodymowy płytkowy
| właściwości | wartości |
|---|---|
| Nr kat. | 020122 |
| GTIN/EAN | 5906301811282 |
| Produkcja/Dystrybucja | Dhit sp. z o.o. |
| Kraj pochodzenia | Polska / Chiny / Niemcy |
| Kod celny | 85059029 |
| Długość | 15 mm [±0,1 mm] |
| Szerokość | 3 mm [±0,1 mm] |
| Wysokość | 6 mm [±0,1 mm] |
| Waga | 2.03 g |
| Kierunek magnesowania | ↑ osiowy |
| Udźwig ~ ? | 1.90 kg / 18.68 N |
| Indukcja magnetyczna ~ ? | 543.23 mT / 5432 Gs |
| Powłoka | [NiCuNi] nikiel |
| Tolerancja wykonania | ±0.1 mm |
Własności magnetyczne materiału N38
| właściwości | wartości | jednostki |
|---|---|---|
| remanencja Br [min. - maks.] ? | 12.2-12.6 | kGs |
| remanencja Br [min. - maks.] ? | 1220-1260 | mT |
| koercja bHc ? | 10.8-11.5 | kOe |
| koercja bHc ? | 860-915 | kA/m |
| faktyczna wewnętrzna siła iHc | ≥ 12 | kOe |
| faktyczna wewnętrzna siła iHc | ≥ 955 | kA/m |
| gęstość energii [min. - maks.] ? | 36-38 | BH max MGOe |
| gęstość energii [min. - maks.] ? | 287-303 | BH max KJ/m |
| max. temperatura ? | ≤ 80 | °C |
Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
| właściwości | wartości | jednostki |
|---|---|---|
| Twardość Vickersa | ≥550 | Hv |
| Gęstość | ≥7.4 | g/cm3 |
| Temperatura Curie TC | 312 - 380 | °C |
| Temperatura Curie TF | 593 - 716 | °F |
| Specyficzna oporność | 150 | μΩ⋅cm |
| Siła wyginania | 250 | MPa |
| Wytrzymałość na ściskanie | 1000~1100 | MPa |
| Rozszerzenie termiczne równoległe (∥) do orientacji (M) | (3-4) x 10-6 | °C-1 |
| Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) | -(1-3) x 10-6 | °C-1 |
| Moduł Younga | 1.7 x 104 | kg/mm² |
Symulacja fizyczna magnesu - raport
Przedstawione informacje stanowią wynik analizy matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.
Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 15x3x6 / N38
| Dystans (mm) | Indukcja (Gauss) / mT | Udźwig (kg/lbs/g/N) | Status ryzyka |
|---|---|---|---|
| 0 mm |
5423 Gs
542.3 mT
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
słaby uchwyt |
| 1 mm |
3221 Gs
322.1 mT
|
0.67 kg / 1.48 lbs
670.2 g / 6.6 N
|
słaby uchwyt |
| 2 mm |
1942 Gs
194.2 mT
|
0.24 kg / 0.54 lbs
243.7 g / 2.4 N
|
słaby uchwyt |
| 3 mm |
1274 Gs
127.4 mT
|
0.10 kg / 0.23 lbs
104.9 g / 1.0 N
|
słaby uchwyt |
| 5 mm |
652 Gs
65.2 mT
|
0.03 kg / 0.06 lbs
27.5 g / 0.3 N
|
słaby uchwyt |
| 10 mm |
195 Gs
19.5 mT
|
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
|
słaby uchwyt |
| 15 mm |
81 Gs
8.1 mT
|
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
|
słaby uchwyt |
| 20 mm |
41 Gs
4.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
słaby uchwyt |
| 30 mm |
14 Gs
1.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
| 50 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
słaby uchwyt |
Tabela 2: Równoległa siła zsuwania (pion)
MPL 15x3x6 / N38
| Dystans (mm) | Współczynnik tarcia | Udźwig (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| 1 mm | Stal (~0.2) |
0.13 kg / 0.30 lbs
134.0 g / 1.3 N
|
| 2 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 3 mm | Stal (~0.2) |
0.02 kg / 0.04 lbs
20.0 g / 0.2 N
|
| 5 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 15x3x6 / N38
| Rodzaj powierzchni | Współczynnik tarcia / % Mocy | Maks. ciężar (kg/lbs/g/N) |
|---|---|---|
| Stal surowa |
µ = 0.3
30% Nominalnej Siły
|
0.57 kg / 1.26 lbs
570.0 g / 5.6 N
|
| Stal malowana (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
|
| Stal tłusta/śliska |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| Magnes z gumą antypoślizgową |
µ = 0.5
50% Nominalnej Siły
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 15x3x6 / N38
| Grubość blachy (mm) | % mocy | Realny udźwig (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
|
| 1 mm |
|
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
|
| 2 mm |
|
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
|
| 3 mm |
|
1.42 kg / 3.14 lbs
1425.0 g / 14.0 N
|
| 5 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 10 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 11 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
| 12 mm |
|
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 15x3x6 / N38
| Temp. otoczenia (°C) | Strata mocy | Pozostały udźwig (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
|
OK |
| 40 °C | -2.2% |
1.86 kg / 4.10 lbs
1858.2 g / 18.2 N
|
OK |
| 60 °C | -4.4% |
1.82 kg / 4.00 lbs
1816.4 g / 17.8 N
|
OK |
| 80 °C | -6.6% |
1.77 kg / 3.91 lbs
1774.6 g / 17.4 N
|
|
| 100 °C | -28.8% |
1.35 kg / 2.98 lbs
1352.8 g / 13.3 N
|
Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 15x3x6 / N38
| Szczelina (mm) | Przyciąganie (kg/lbs) (N-S) | Siła ścinająca (kg/lbs/g/N) | Odpychanie (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.16 kg / 17.99 lbs
5 914 Gs
|
1.22 kg / 2.70 lbs
1224 g / 12.0 N
|
N/A |
| 1 mm |
4.96 kg / 10.94 lbs
8 460 Gs
|
0.74 kg / 1.64 lbs
745 g / 7.3 N
|
4.47 kg / 9.85 lbs
~0 Gs
|
| 2 mm |
2.88 kg / 6.34 lbs
6 441 Gs
|
0.43 kg / 0.95 lbs
432 g / 4.2 N
|
2.59 kg / 5.71 lbs
~0 Gs
|
| 3 mm |
1.70 kg / 3.75 lbs
4 950 Gs
|
0.25 kg / 0.56 lbs
255 g / 2.5 N
|
1.53 kg / 3.37 lbs
~0 Gs
|
| 5 mm |
0.67 kg / 1.48 lbs
3 116 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.61 kg / 1.34 lbs
~0 Gs
|
| 10 mm |
0.12 kg / 0.26 lbs
1 304 Gs
|
0.02 kg / 0.04 lbs
18 g / 0.2 N
|
0.11 kg / 0.23 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
391 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
46 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
19 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
13 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
9 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
7 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 15x3x6 / N38
| Obiekt / Urządzenie | Limit (Gauss) / mT | Bezpieczny dystans |
|---|---|---|
| Rozrusznik serca | 5 Gs (0.5 mT) | 4.5 cm |
| Implant słuchowy | 10 Gs (1.0 mT) | 3.5 cm |
| Zegarek mechaniczny | 20 Gs (2.0 mT) | 3.0 cm |
| Telefon / Smartfon | 40 Gs (4.0 mT) | 2.5 cm |
| Kluczyk samochodowy | 50 Gs (5.0 mT) | 2.0 cm |
| Karta płatnicza | 400 Gs (40.0 mT) | 1.0 cm |
| Dysk twardy HDD | 600 Gs (60.0 mT) | 1.0 cm |
Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 15x3x6 / N38
| Start z (mm) | Prędkość (km/h) | Energia (J) | Przewidywany skutek |
|---|---|---|---|
| 10 mm |
30.88 km/h
(8.58 m/s)
|
0.07 J | |
| 30 mm |
53.44 km/h
(14.84 m/s)
|
0.22 J | |
| 50 mm |
68.99 km/h
(19.16 m/s)
|
0.37 J | |
| 100 mm |
97.57 km/h
(27.10 m/s)
|
0.75 J |
Tabela 9: Odporność na korozję
MPL 15x3x6 / N38
| Parametr techniczny | Wartość / opis |
|---|---|
| Rodzaj powłoki | [NiCuNi] nikiel |
| Struktura warstw | Nikiel - Miedź - Nikiel |
| Grubość warstwy | 10-20 µm |
| Test mgły solnej (SST) ? | 24 h |
| Zalecane środowisko | Tylko wnętrza (sucho) |
Tabela 10: Dane elektryczne (Pc)
MPL 15x3x6 / N38
| Parametr | Wartość | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 2 390 Mx | 23.9 µWb |
| Współczynnik Pc | 0.79 | Wysoki (Stabilny) |
Tabela 11: Fizyka poszukiwań podwodnych
MPL 15x3x6 / N38
| Środowisko | Efektywny udźwig stali | Efekt |
|---|---|---|
| Powietrze (ląd) | 1.90 kg | Standard |
| Woda (dno rzeki) |
2.18 kg
(+0.28 kg zysk z wyporności)
|
+14.5% |
1. Ześlizg (ściana)
*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.
2. Efektywność, a grubość stali
*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.
3. Praca w cieple
*Dla materiału N38 granica bezpieczeństwa to 80°C.
4. Krzywa odmagnesowania i punkt pracy (B-H)
wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79
Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.
Analiza pierwiastkowa
| żelazo (Fe) | 64% – 68% |
| neodym (Nd) | 29% – 32% |
| bor (B) | 1.1% – 1.2% |
| dysproz (Dy) | 0.5% – 2.0% |
| powłoka (Ni-Cu-Ni) | < 0.05% |
Ekologia i recykling (GPSR)
| recyklowalność (EoL) | 100% |
| surowce z recyklingu | ~10% (pre-cons) |
| ślad węglowy | low / zredukowany |
| kod odpadu (EWC) | 16 02 16 |
Sprawdź inne oferty
Zalety oraz wady neodymowych magnesów Nd2Fe14B.
Zalety
- Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
- Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
- Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
- Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
- Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
- Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
- Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
- Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.
Ograniczenia
- Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
- Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
- Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
- Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
- Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
- Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.
Analiza siły trzymania
Maksymalna siła przyciągania magnesu – od czego zależy?
- przy kontakcie z blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
- posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
- o szlifowanej powierzchni kontaktu
- w warunkach idealnego przylegania (metal do metalu)
- podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
- w neutralnych warunkach termicznych
Udźwig w warunkach rzeczywistych – czynniki
- Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
- Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
- Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
- Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
- Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
- Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.
Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.
Zasady BHP dla użytkowników magnesów
Łamliwość magnesów
Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.
Interferencja magnetyczna
Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.
Wrażliwość na ciepło
Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).
Niebezpieczeństwo przytrzaśnięcia
Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.
Zagrożenie zapłonem
Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.
Interferencja medyczna
Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.
Karty i dyski
Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.
Chronić przed dziećmi
Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.
Świadome użytkowanie
Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.
Unikaj kontaktu w przypadku alergii
Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.
