Potężne magnesy neodymowe: płytkowe i walcowe

Chcesz kupić naprawdę silne magnesy? Oferujemy szeroki wybór magnesów płytkowych, walcowych i pierścieniowych. Doskonale sprawdzą się do użytku w domu, garażu oraz modelarstwa. Zobacz produkty dostępne od ręki.

sprawdź cennik i wymiary

Sprzęt dla poszukiwaczy skarbów

Odkryj pasję związaną z eksploracją dna! Nasze uchwyty z dwoma uchwytami (F200, F400) to gwarancja bezpieczeństwa i ogromnego udźwigu. Solidna, antykorozyjna obudowa oraz mocne linki sprawdzą się w trudnych warunkach wodnych.

znajdź sprzęt do poszukiwań

Magnetyczne systemy mocowań

Sprawdzone rozwiązania do montażu bez wiercenia. Mocowania gwintowane (M8, M10, M12) gwarantują błyskawiczną organizację pracy na magazynach. Idealnie nadają się przy instalacji oświetlenia, czujników oraz banerów.

sprawdź zastosowania przemysłowe

🚚 Zamów do 14:00 – wyślemy jeszcze dzisiaj!

Dhit sp. z o.o.
Produkt dostępny Wysyłamy jutro

MPL 15x3x6 / N38 - magnes neodymowy płytkowy

magnes neodymowy płytkowy

Numer katalogowy 020122

GTIN/EAN: 5906301811282

5.00

Długość

15 mm [±0,1 mm]

Szerokość

3 mm [±0,1 mm]

Wysokość

6 mm [±0,1 mm]

Waga

2.03 g

Kierunek magnesowania

↑ osiowy

Udźwig

1.90 kg / 18.68 N

Indukcja magnetyczna

543.23 mT / 5432 Gs

Powłoka

[NiCuNi] nikiel

0.726 z VAT / szt. + cena za transport

0.590 ZŁ netto + 23% VAT / szt.

upusty ilościowe:

Potrzebujesz więcej?

cena od 1 szt.
0.590 ZŁ
0.726 ZŁ
cena od 1100 szt.
0.555 ZŁ
0.682 ZŁ
cena od 4300 szt.
0.519 ZŁ
0.639 ZŁ
Nie jesteś pewien wyboru?

Dzwoń do nas +48 22 499 98 98 ewentualnie zostaw wiadomość poprzez formularz przez naszą stronę.
Udźwig i wygląd magnesu neodymowego obliczysz u nas w kalkulatorze masy magnetycznej.

Zamówienia złożone do godziny 14:00 zostaną wysłane tego samego dnia roboczego.

Właściwości fizyczne MPL 15x3x6 / N38 - magnes neodymowy płytkowy

Specyfikacja / charakterystyka - MPL 15x3x6 / N38 - magnes neodymowy płytkowy

właściwości
właściwości wartości
Nr kat. 020122
GTIN/EAN 5906301811282
Produkcja/Dystrybucja Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Kraj pochodzenia Polska / Chiny / Niemcy
Kod celny 85059029
Długość 15 mm [±0,1 mm]
Szerokość 3 mm [±0,1 mm]
Wysokość 6 mm [±0,1 mm]
Waga 2.03 g
Kierunek magnesowania ↑ osiowy
Udźwig ~ ? 1.90 kg / 18.68 N
Indukcja magnetyczna ~ ? 543.23 mT / 5432 Gs
Powłoka [NiCuNi] nikiel
Tolerancja wykonania ±0.1 mm

Własności magnetyczne materiału N38

Specyfikacja / charakterystyka MPL 15x3x6 / N38 - magnes neodymowy płytkowy
właściwości wartości jednostki
remanencja Br [min. - maks.] ? 12.2-12.6 kGs
remanencja Br [min. - maks.] ? 1220-1260 mT
koercja bHc ? 10.8-11.5 kOe
koercja bHc ? 860-915 kA/m
faktyczna wewnętrzna siła iHc ≥ 12 kOe
faktyczna wewnętrzna siła iHc ≥ 955 kA/m
gęstość energii [min. - maks.] ? 36-38 BH max MGOe
gęstość energii [min. - maks.] ? 287-303 BH max KJ/m
max. temperatura ? ≤ 80 °C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C

Własności fizyczne spiekanych magnesów neodymowych Nd2Fe14B w temperaturze 20°C
właściwości wartości jednostki
Twardość Vickersa ≥550 Hv
Gęstość ≥7.4 g/cm3
Temperatura Curie TC 312 - 380 °C
Temperatura Curie TF 593 - 716 °F
Specyficzna oporność 150 μΩ⋅cm
Siła wyginania 250 MPa
Wytrzymałość na ściskanie 1000~1100 MPa
Rozszerzenie termiczne równoległe (∥) do orientacji (M) (3-4) x 10-6 °C-1
Rozszerzenie termiczne prostopadłe (⊥) do orientacji (M) -(1-3) x 10-6 °C-1
Moduł Younga 1.7 x 104 kg/mm²

Symulacja fizyczna magnesu - raport

Przedstawione informacje stanowią wynik analizy matematycznej. Wartości oparte są na algorytmach dla klasy Nd2Fe14B. Rzeczywiste parametry mogą nieznacznie różnić się od wartości teoretycznych. Prosimy traktować te dane jako wstępny drogowskaz podczas planowania montażu.

Tabela 1: Udźwig statyczny prostopadły (udźwig vs dystans) - wykres oddziaływania
MPL 15x3x6 / N38

Dystans (mm) Indukcja (Gauss) / mT Udźwig (kg/lbs/g/N) Status ryzyka
0 mm 5423 Gs
542.3 mT
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
słaby uchwyt
1 mm 3221 Gs
322.1 mT
0.67 kg / 1.48 lbs
670.2 g / 6.6 N
słaby uchwyt
2 mm 1942 Gs
194.2 mT
0.24 kg / 0.54 lbs
243.7 g / 2.4 N
słaby uchwyt
3 mm 1274 Gs
127.4 mT
0.10 kg / 0.23 lbs
104.9 g / 1.0 N
słaby uchwyt
5 mm 652 Gs
65.2 mT
0.03 kg / 0.06 lbs
27.5 g / 0.3 N
słaby uchwyt
10 mm 195 Gs
19.5 mT
0.00 kg / 0.01 lbs
2.5 g / 0.0 N
słaby uchwyt
15 mm 81 Gs
8.1 mT
0.00 kg / 0.00 lbs
0.4 g / 0.0 N
słaby uchwyt
20 mm 41 Gs
4.1 mT
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
słaby uchwyt
30 mm 14 Gs
1.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt
50 mm 4 Gs
0.4 mT
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
słaby uchwyt

Tabela 2: Równoległa siła zsuwania (pion)
MPL 15x3x6 / N38

Dystans (mm) Współczynnik tarcia Udźwig (kg/lbs/g/N)
0 mm Stal (~0.2) 0.38 kg / 0.84 lbs
380.0 g / 3.7 N
1 mm Stal (~0.2) 0.13 kg / 0.30 lbs
134.0 g / 1.3 N
2 mm Stal (~0.2) 0.05 kg / 0.11 lbs
48.0 g / 0.5 N
3 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
5 mm Stal (~0.2) 0.01 kg / 0.01 lbs
6.0 g / 0.1 N
10 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
0.0 g / 0.0 N

Tabela 3: Montaż pionowy (poślizg) - zachowanie na śliskim podłożu
MPL 15x3x6 / N38

Rodzaj powierzchni Współczynnik tarcia / % Mocy Maks. ciężar (kg/lbs/g/N)
Stal surowa
µ = 0.3 30% Nominalnej Siły
0.57 kg / 1.26 lbs
570.0 g / 5.6 N
Stal malowana (standard)
µ = 0.2 20% Nominalnej Siły
0.38 kg / 0.84 lbs
380.0 g / 3.7 N
Stal tłusta/śliska
µ = 0.1 10% Nominalnej Siły
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
Magnes z gumą antypoślizgową
µ = 0.5 50% Nominalnej Siły
0.95 kg / 2.09 lbs
950.0 g / 9.3 N

Tabela 4: Grubość stali (wpływ podłoża) - dobór blachy
MPL 15x3x6 / N38

Grubość blachy (mm) % mocy Realny udźwig (kg/lbs/g/N)
0.5 mm
10%
0.19 kg / 0.42 lbs
190.0 g / 1.9 N
1 mm
25%
0.48 kg / 1.05 lbs
475.0 g / 4.7 N
2 mm
50%
0.95 kg / 2.09 lbs
950.0 g / 9.3 N
3 mm
75%
1.42 kg / 3.14 lbs
1425.0 g / 14.0 N
5 mm
100%
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
10 mm
100%
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
11 mm
100%
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
12 mm
100%
1.90 kg / 4.19 lbs
1900.0 g / 18.6 N

Tabela 5: Stabilność termiczna (stabilność) - spadek mocy
MPL 15x3x6 / N38

Temp. otoczenia (°C) Strata mocy Pozostały udźwig (kg/lbs/g/N) Status
20 °C 0.0% 1.90 kg / 4.19 lbs
1900.0 g / 18.6 N
OK
40 °C -2.2% 1.86 kg / 4.10 lbs
1858.2 g / 18.2 N
OK
60 °C -4.4% 1.82 kg / 4.00 lbs
1816.4 g / 17.8 N
OK
80 °C -6.6% 1.77 kg / 3.91 lbs
1774.6 g / 17.4 N
100 °C -28.8% 1.35 kg / 2.98 lbs
1352.8 g / 13.3 N

Tabela 6: Dwa magnesy (przyciąganie) - kolizja pól
MPL 15x3x6 / N38

Szczelina (mm) Przyciąganie (kg/lbs) (N-S) Siła ścinająca (kg/lbs/g/N) Odpychanie (kg/lbs) (N-N)
0 mm 8.16 kg / 17.99 lbs
5 914 Gs
1.22 kg / 2.70 lbs
1224 g / 12.0 N
N/A
1 mm 4.96 kg / 10.94 lbs
8 460 Gs
0.74 kg / 1.64 lbs
745 g / 7.3 N
4.47 kg / 9.85 lbs
~0 Gs
2 mm 2.88 kg / 6.34 lbs
6 441 Gs
0.43 kg / 0.95 lbs
432 g / 4.2 N
2.59 kg / 5.71 lbs
~0 Gs
3 mm 1.70 kg / 3.75 lbs
4 950 Gs
0.25 kg / 0.56 lbs
255 g / 2.5 N
1.53 kg / 3.37 lbs
~0 Gs
5 mm 0.67 kg / 1.48 lbs
3 116 Gs
0.10 kg / 0.22 lbs
101 g / 1.0 N
0.61 kg / 1.34 lbs
~0 Gs
10 mm 0.12 kg / 0.26 lbs
1 304 Gs
0.02 kg / 0.04 lbs
18 g / 0.2 N
0.11 kg / 0.23 lbs
~0 Gs
20 mm 0.01 kg / 0.02 lbs
391 Gs
0.00 kg / 0.00 lbs
2 g / 0.0 N
0.01 kg / 0.02 lbs
~0 Gs
50 mm 0.00 kg / 0.00 lbs
46 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
60 mm 0.00 kg / 0.00 lbs
29 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
70 mm 0.00 kg / 0.00 lbs
19 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
80 mm 0.00 kg / 0.00 lbs
13 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
90 mm 0.00 kg / 0.00 lbs
9 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs
100 mm 0.00 kg / 0.00 lbs
7 Gs
0.00 kg / 0.00 lbs
0 g / 0.0 N
0.00 kg / 0.00 lbs
~0 Gs

Tabela 7: Zagrożenia (implanty) - środki ostrożności
MPL 15x3x6 / N38

Obiekt / Urządzenie Limit (Gauss) / mT Bezpieczny dystans
Rozrusznik serca 5 Gs (0.5 mT) 4.5 cm
Implant słuchowy 10 Gs (1.0 mT) 3.5 cm
Zegarek mechaniczny 20 Gs (2.0 mT) 3.0 cm
Telefon / Smartfon 40 Gs (4.0 mT) 2.5 cm
Kluczyk samochodowy 50 Gs (5.0 mT) 2.0 cm
Karta płatnicza 400 Gs (40.0 mT) 1.0 cm
Dysk twardy HDD 600 Gs (60.0 mT) 1.0 cm

Tabela 8: Zderzenia (energia kinetyczna) - ostrzeżenie
MPL 15x3x6 / N38

Start z (mm) Prędkość (km/h) Energia (J) Przewidywany skutek
10 mm 30.88 km/h
(8.58 m/s)
0.07 J
30 mm 53.44 km/h
(14.84 m/s)
0.22 J
50 mm 68.99 km/h
(19.16 m/s)
0.37 J
100 mm 97.57 km/h
(27.10 m/s)
0.75 J

Tabela 9: Odporność na korozję
MPL 15x3x6 / N38

Parametr techniczny Wartość / opis
Rodzaj powłoki [NiCuNi] nikiel
Struktura warstw Nikiel - Miedź - Nikiel
Grubość warstwy 10-20 µm
Test mgły solnej (SST) ? 24 h
Zalecane środowisko Tylko wnętrza (sucho)

Tabela 10: Dane elektryczne (Pc)
MPL 15x3x6 / N38

Parametr Wartość Jedn. SI / Opis
Strumień (Flux) 2 390 Mx 23.9 µWb
Współczynnik Pc 0.79 Wysoki (Stabilny)

Tabela 11: Fizyka poszukiwań podwodnych
MPL 15x3x6 / N38

Środowisko Efektywny udźwig stali Efekt
Powietrze (ląd) 1.90 kg Standard
Woda (dno rzeki) 2.18 kg
(+0.28 kg zysk z wyporności)
+14.5%
Ostrzeżenie: Pamiętaj o dokładnym wytarciu magnesu po wyjęciu z wody i nałożeniu warstwy ochronnej (np. oleju), aby uniknąć korozji.
1. Ześlizg (ściana)

*Ważne: Na powierzchni pionowej magnes utrzyma zaledwie ułamek siły oderwania.

2. Efektywność, a grubość stali

*Zbyt cienki metal (np. obudowa PC 0.5mm) znacząco osłabia siłę trzymania.

3. Praca w cieple

*Dla materiału N38 granica bezpieczeństwa to 80°C.

4. Krzywa odmagnesowania i punkt pracy (B-H)

wykres generowany dla współczynnika permeancji Pc (Permeance Coefficient) = 0.79

Niniejsza symulacja obrazuje stabilność magnetyczną wybranego magnesu w konkretnych warunkach geometrycznych. Czerwona linia ciągła to krzywa odmagnesowania, która pokazuje maksymalny potencjał materiału, natomiast niebieska linia przerywana to linia obciążenia zależna od kształtu magnesu. Współczynnik Pc (Permeance Coefficient), nazywany również współczynnikiem kształtu, jest bezwymiarową wielkością określającą relację geometrii magnesu do jego wewnętrznej stabilności magnetycznej. Punkt przecięcia obu linii (czarna kropka) to tzw. punkt pracy — wyznacza on realną gęstość strumienia magnetycznego, jaką magnes generuje w danej aplikacji. Im wyższa wartość Pc, tym 'smuklejszy' jest magnes (wysoki względem powierzchni) i tym wyżej znajduje się punkt pracy, co gwarantuje większą odporność na nieodwracalne rozmagnesowanie pod wpływem temperatury. Wartość 0.42 jest relatywnie niska (typowo dla magnesów płaskich), co oznacza, że punkt pracy znajduje się blisko 'kolana' krzywej — przy pracy w temperaturach zbliżonych do maksymalnej należy liczyć się z możliwością osłabienia siły magnesu.

Specyfikacja techniczna i ekologia
Analiza pierwiastkowa
żelazo (Fe) 64% – 68%
neodym (Nd) 29% – 32%
bor (B) 1.1% – 1.2%
dysproz (Dy) 0.5% – 2.0%
powłoka (Ni-Cu-Ni) < 0.05%
Ekologia i recykling (GPSR)
recyklowalność (EoL) 100%
surowce z recyklingu ~10% (pre-cons)
ślad węglowy low / zredukowany
kod odpadu (EWC) 16 02 16
Karta bezpieczeństwa (GPSR)
podmiot odpowiedzialny
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
numer partii/typ
id: 020122-2026
Kalkulator miar
Siła (udźwig)

Indukcja magnetyczna

Sprawdź inne oferty

Komponent MPL 15x3x6 / N38 cechuje się niskim profilem oraz przemysłową siłą przyciągania, dzięki czemu jest to rozwiązanie idealne do budowy separatorów i maszyn. Ten prostopadłościan o sile 18.68 N jest gotowy do wysyłki w 24h, co pozwala na szybką realizację Twojego projektu. Ponadto, jego powłoka Ni-Cu-Ni zabezpiecza go przed korozją w standardowych warunkach pracy, nadając mu estetyczny wygląd.
Rozdzielanie silnych magnesów płaskich wymaga techniki polegającej na zsuwaniu (przesuwaniu jednego względem drugiego), a nie na siłowym odrywaniu. Aby rozłączyć model MPL 15x3x6 / N38, należy zdecydowanym ruchem zsunąć jeden magnes po krawędzi drugiego, aż siła przyciągania zmaleje. Zalecamy ogromną ostrożność, ponieważ po rozdzieleniu magnesy mogą chcieć gwałtownie do siebie wrócić, co grozi przytrzaśnięciem skóry. Używanie śrubokręta grozi zniszczeniem powłoki i trwałym pęknięciem magnesu.
Magnesy płytkowe MPL 15x3x6 / N38 są fundamentem dla wielu urządzeń przemysłowych, takich jak filtry wyłapujące opiłki oraz silniki liniowe. Świetnie sprawdzają się jako niewidoczne mocowania pod płytkami, drewnem czy szkłem. Klienci często wybierają ten model do organizacji warsztatu na listwach oraz do zaawansowanych projektów DIY i modelarskich, gdzie liczy się precyzja i moc.
Kleje cyjanoakrylowe (typu Kropelka) są dobre tylko do małych magnesów, przy większych płytkach zalecamy żywice. W przypadku lżejszych zastosowań lub montażu na gładkich powierzchniach, sprawdzi się markowa taśma piankowa (np. 3M VHB), pod warunkiem idealnego odtłuszczenia powierzchni. Unikaj klejów agresywnych chemicznie lub gorącego kleju, który może rozmagnesować neodym (powyżej 80°C).
Standardowo model MPL 15x3x6 / N38 jest magnesowany osiowo (wymiar 6 mm), co oznacza, że bieguny N i S znajdują się na jego największych, płaskich powierzchniach. Dzięki temu najlepiej sprawdza się przy „klejeniu” się do blachy lub innego magnesu dużą powierzchnią. Jest to najpopularniejsza konfiguracja dla magnesów blokowych stosowanych w separatorach i uchwytach.
Model ten charakteryzuje się wymiarami 15x3x6 mm, co przy wadze 2.03 g czyni go elementem o wysokiej gęstości energii. Kluczowym parametrem jest tutaj siła trzymania wynoszący około 1.90 kg (siła ~18.68 N), co przy tak kompaktowym kształcie świadczy o wysokiej klasie materiału. Powłoka ochronna [NiCuNi] zabezpiecza magnes przed korozją.

Zalety oraz wady neodymowych magnesów Nd2Fe14B.

Zalety

Poza potężną energią, magnesy typu NdFeB posiadają wiele innych atutów::
  • Ich parametry są stabilne w czasie; po 10 latach eksploatacji redukcja udźwigu to marginalne ~1%.
  • Są stabilne magnetycznie, gdyż wykazują potężną odporność na zewnętrzne czynniki.
  • Dzięki warstwie ochronnej (nikiel, Au, srebro) zyskują nowoczesny, metaliczny wygląd.
  • Wytwarzają skoncentrowane pole magnetyczne przy biegunach, co jest ich kluczową cechą.
  • Są przystosowane do pracy w ekstremalnym cieple – wybrane modele znoszą temperaturę do 230°C (zależnie od proporcji).
  • Wszechstronność kształtowania – można je produkować w dowolnych formach, idealnych do wymagań klienta.
  • Znajdują powszechne zastosowanie w nowoczesnej technice – od dysków twardych i motorów elektrycznych, po precyzyjną aparaturę medyczną.
  • Mały rozmiar, wielka moc – przy niewielkich gabarytach oferują ogromną siłę, co jest kluczowe przy budowie małych urządzeń.

Ograniczenia

Czego unikać? Wady i zagrożenia związane z neodymami:
  • Ze względu na brak elastyczności, wymagają ostrożności. Silne uderzenie może je zniszczyć, stąd rekomendacja stosowania osłon.
  • Klasyczne neodymy tracą moc powyżej 80°C. Jeśli potrzebujesz pracy w wyższych temperaturach, wybierz serię [AH] (odporną do 230°C).
  • Wilgoć powoduje korozję w mokrym otoczeniu. Na zewnątrz zalecamy użycie magnesów hermetycznych (np. w gumie).
  • Trudności montażowe: zamiast próbować robić otwory kruchy magnes, skorzystaj z uchwytów w stalowej obudowie, które posiadają gwinty.
  • Uważaj na małe części – połknięcie wymaga interwencji chirurga. Mogą też być problemem przy diagnostyce MRI.
  • Są produktem premium – ich cena jest wyższa niż ferrytów, co należy uwzględnić przy kalkulacji produkcji.

Analiza siły trzymania

Maksymalna siła przyciągania magnesuod czego zależy?

Deklarowana siła magnesu odnosi się do siły granicznej, którą zmierzono w środowisku optymalnym, czyli:
  • przy kontakcie z blachy ze stali niskowęglowej, gwarantującej maksymalne skupienie pola
  • posiadającej grubość co najmniej 10 mm aby uniknąć nasycenia
  • o szlifowanej powierzchni kontaktu
  • w warunkach idealnego przylegania (metal do metalu)
  • podczas ciągnięcia w kierunku pionowym do płaszczyzny mocowania
  • w neutralnych warunkach termicznych

Udźwig w warunkach rzeczywistych – czynniki

Na realną siłę oddziałują konkretne warunki, m.in. (od najważniejszych):
  • Przerwa między powierzchniami – każdy milimetr odległości (spowodowany np. lakierem lub nierównością) znacząco osłabia siłę przyciągania, często o połowę przy zaledwie 0,5 mm.
  • Kąt odrywania – pamiętaj, że magnes najmocniej trzyma prostopadle. Przy działaniu sił bocznych, siła trzymania spada znacząco, często do poziomu 20-30% wartości nominalnej.
  • Grubość elementu – dla pełnej efektywności, stal musi być odpowiednio gruba. Cienka blacha ogranicza siłę przyciągania (magnes „przebija” ją na wylot).
  • Skład materiału – różne stopy reaguje tak samo. Wysoka zawartość węgla pogarszają efekt przyciągania.
  • Jakość powierzchni – im równiejsza powierzchnia, tym większa strefa kontaktu i wyższy udźwig. Nierówności działają jak mikroszczeliny.
  • Wpływ temperatury – gorące środowisko osłabia pole magnetyczne. Zbyt wysoka temperatura może trwale rozmagnesować magnes.

Pomiar udźwigu przeprowadzano na blachach o gładkiej powierzchni o optymalnej grubości, przy prostopadłym działaniu siły, jednak przy siłach działających równolegle siła trzymania jest mniejsza nawet pięć razy. Dodatkowo, nawet niewielka szczelina między powierzchnią magnesu, a blachą redukuje siłę trzymania.

Zasady BHP dla użytkowników magnesów
Łamliwość magnesów

Mimo niklowej powłoki, neodym jest kruchy i nieodporny na uderzenia. Nie uderzaj, gdyż magnes może się pokruszyć na ostre, niebezpieczne kawałki.

Interferencja magnetyczna

Urządzenia nawigacyjne są niezwykle wrażliwe na pole magnetyczne. Bezpośredni kontakt z silnym magnesem może zniszczyć czujniki w Twoim telefonie.

Wrażliwość na ciepło

Unikaj gorąca. Magnesy neodymowe są nieodporne na temperaturę. Jeśli potrzebujesz odporności powyżej 80°C, wybierz specjalne serie wysokotemperaturowe (H, SH, UH).

Niebezpieczeństwo przytrzaśnięcia

Niebezpieczeństwo urazu: Moc ściskania jest tak duża, że może wywołać krwiaki, zgniecenia, a nawet złamania kości. Używaj grubych rękawic.

Zagrożenie zapłonem

Wiercenie i cięcie magnesów neodymowych stwarza ryzyko zapłonu. Pył neodymowy utlenia się błyskawicznie z tlenem i jest trudny do gaszenia.

Interferencja medyczna

Ostrzeżenie dla sercowców: Silne pole magnetyczne wpływa na elektronikę medyczną. Zachowaj co najmniej 30 cm odstępu lub zleć komuś innemu obsługę magnesów.

Karty i dyski

Potężne pole magnetyczne może zniszczyć zapis na kartach kredytowych, nośnikach HDD i innych pamięciach. Zachowaj odstęp min. 10 cm.

Chronić przed dziećmi

Artykuł tylko dla osób pełnoletnich. Małe elementy mogą zostać połknięte, co prowadzi do martwicy tkanek. Przechowuj poza zasięgiem dzieci i zwierząt.

Świadome użytkowanie

Używaj magnesy świadomie. Ich potężna moc może zaskoczyć nawet doświadczonych użytkowników. Bądź skupiony i respektuj ich siły.

Unikaj kontaktu w przypadku alergii

Ostrzeżenie dla alergików: warstwa ochronna Ni-Cu-Ni ma w składzie nikiel. W przypadku wystąpienia świądu lub podrażnienia, należy natychmiast przerwać pracę z magnesami i zabezpieczyć dłonie.

Zachowaj ostrożność! Chcesz wiedzieć więcej? Sprawdź nasz artykuł: Dlaczego magnesy neodymowe są niebezpieczne?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98